

Calibration of Time-Series Forecasting:

Detecting and Adapting Context-Driven Distribution Shift

Mouxiang Chen^{1*}, Lefei Shen^{1*}, Han Fu¹, Zhuo Li², Jianling Sun¹, Chenghao Liu³

¹Zhejiang University, ²State Street Technology (Zhejiang) Ltd, ³Salesforce Research Asia, *equal contribution

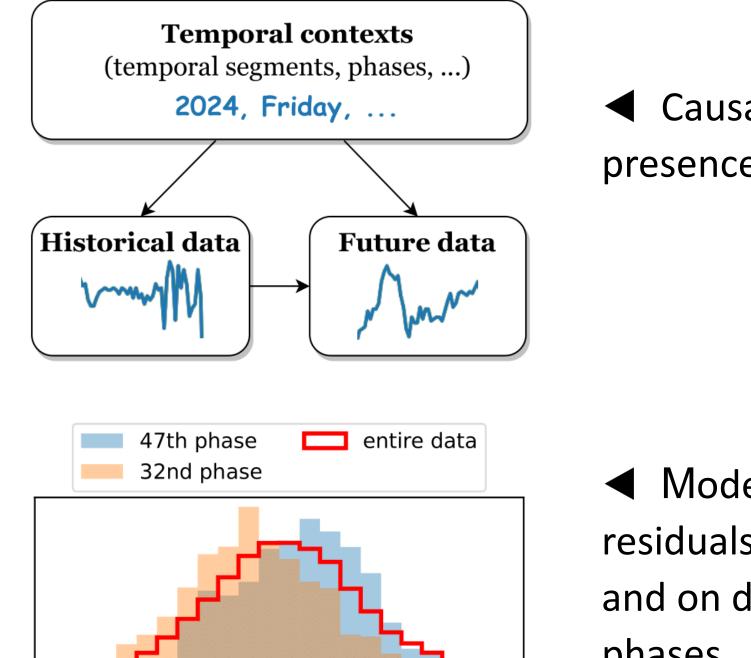
1. Background: CDS Problem

>1.1 What is CDS?: Distribution shift refers to the changing distribution and statistical properties of time series over time. Specifically, this shift is driven by some external contexts, such as temporal segment and periodic phase. Such phenomenon is called Context-Driven Distribution Shift (CDS).

>1.2 Impact of CDS?: Contexts function as confounders, which simultaneously influence historical and future data. Also, the model's prediction residuals on overall data are unbiased, while those under specific contexts are biased, showing that models struggling to achieve optimal performance across each individual contexts.

>1.3 How to solve it?: We propose a model-agnostic "detection and adaptation" framework for model calibration, including:

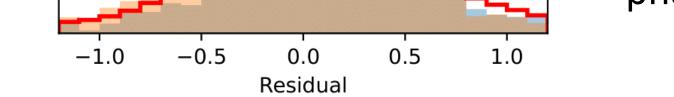
(2) **SOLID**

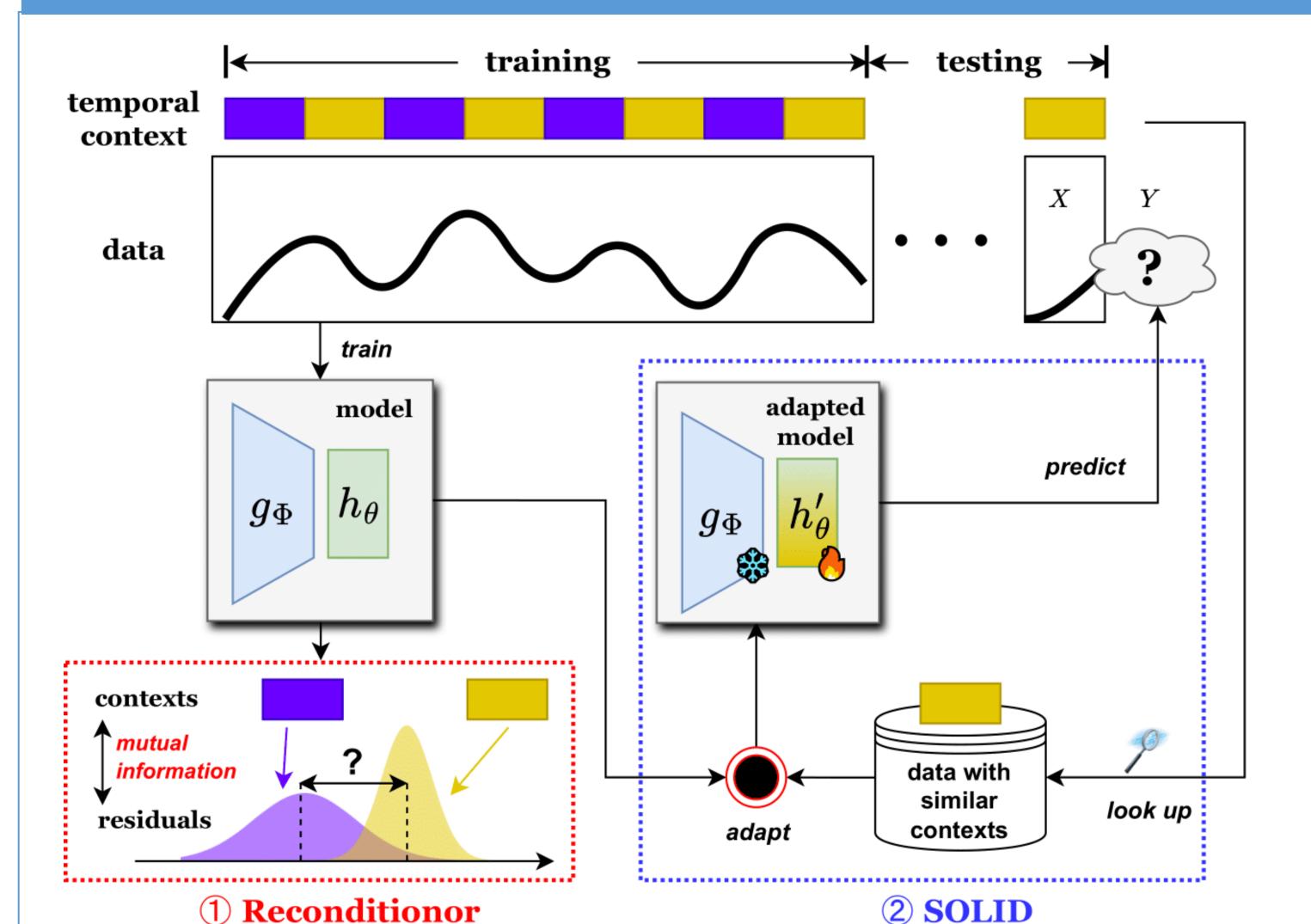


Causal graph in the presence of CDS.

Model's prediction residuals on overall data and on different periodic phases.

Reconditionor: Detects and Quantifies the model's sensitivity to CDS. >SOLID: Fine-tunes the model for each testing sample to calibrate the prediction.





2. Methodology

- Architecture of "detection and adaptation" calibration framework.
- > (1) Reconditionor: Residual-based Context-driven Distribution Shift Detector >We calculate KL divergence between the prediction residual distributions under specific contexts and the overall residual distribution. \succ A higher value indicates a stronger impact of CDS on the model.

 $\delta = MI(\Delta Y; C) = E_C[D_{KL}(P(\Delta Y|C)||P(\Delta Y))]$

- > (2) **SOLID**: Sample-level Contextualized Adapter
 - For each test sample, we construct a contextualized subset with similar contexts, and fine-tune the prediction layer using this subset, to calibrate model's predictions.
 - >Contextualized subset includes samples with small time intervals, close periodic phases, and high sample similarity to the test sample,
 - corresponding to temporal segments, periodic phases, and other contexts.

>Theoretical analysis proves that SOLID achieves a bias-variance balance, compared to not fine-tuning or fully retraining the prediction layer.

3. Algorithms

> Alg1: Calculation of Reconditionor

Algorithm 1: Algorithm for Reconditionor

Input: Model *f*, training data with *K* contexts $\mathcal{D}^{\text{train}} = \{ (X_{t-L:t}, X_{t:t+T}, c_t) : t < t_{\text{train}}, c_t \in [K] \}.$ **Output:** $\delta \in [0, 1]$ indicating *f*'s susceptibility to CDS. 1 $R \leftarrow \emptyset;$ $_2 R_1, \cdots, R_K \leftarrow \emptyset, \cdots, \emptyset;$ 3 for $L \leq t < t_{train}$ do $r \leftarrow f(X_{t-L:t}) - X_{t:t+T};$ $R \leftarrow R \cup r;$ 5 $R_{c_t} \leftarrow R_{c_t} \cup r;$ 7 end 8 $\mu, \sigma \leftarrow \text{Mean}(R)$, Standard-Deviation(R); 9 $\delta \leftarrow 0;$ 10 for $c \in [K]$ do $\mu_c, \sigma_c \leftarrow \text{Mean}(R_c), \text{Standard-Deviation}(R_c);$ 11 $\delta \leftarrow \delta + \frac{|R_c|}{|R|} \mathrm{KL}(\mathcal{N}(\mu_c, \sigma_c^2) \parallel \mathcal{N}(\mu, \sigma^2));$ 12 13 end 14 return δ ;

> Alg2: Algorithm for SOLID

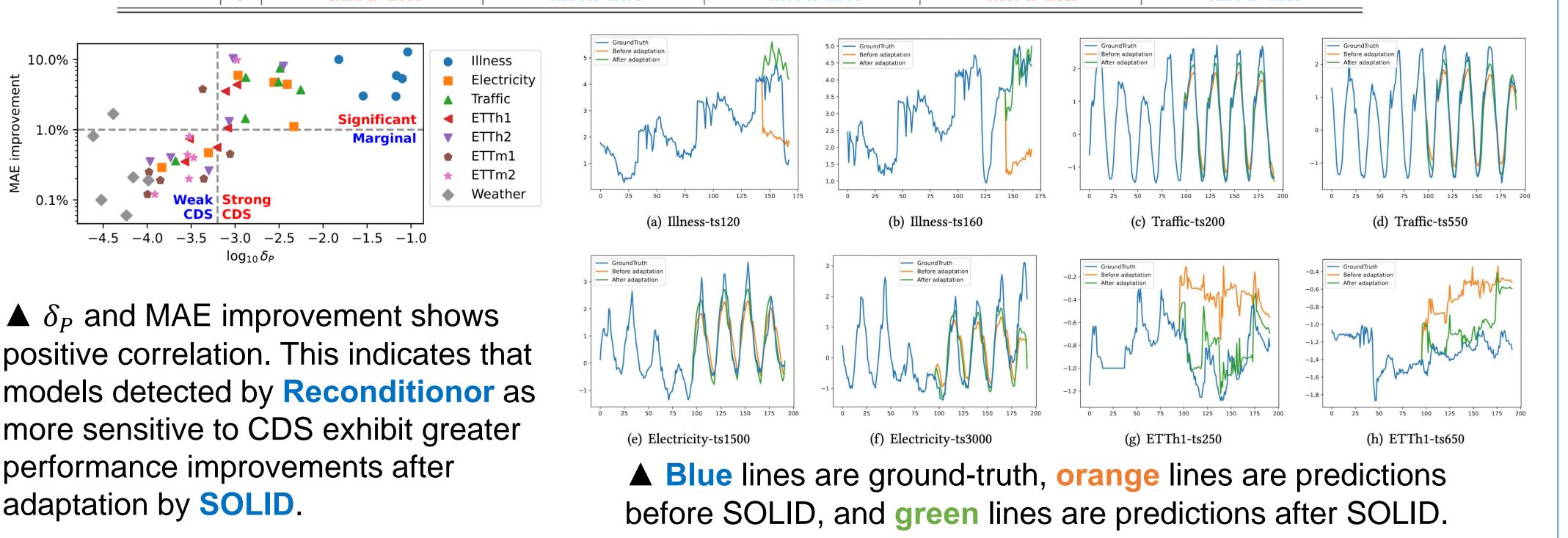
Algorithm 2: Algorithm for SOLID

4. Experiments

▼ MSE & MAE are averaged from prediction length of 24/36/48/60 for Illness and 96/192/336/720 for others. " \uparrow ": average improvements by SOLID. " δ ": Reconditioner value periodic phases (δ_P) and temporal segments (δ_T), reported in the form of " $\log_{10}\delta_P \& \log_{10}\delta_T$ ". RED denotes a strong CDS in periodic phases $(\log_{10}\delta_P \ge -3.2)$, while BLUE denotes a weak CDS.

Dataset	Illness				Electricity				Traffic				ETTh1				ETTh2				
Method		1		+SO	LID	/		+SOLID		/		+SOLID		/		+SOLID		/		+SOLID	
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Informer	$\mathbf{avg} \\ \uparrow \\ \boldsymbol{\delta}$	5.140	1.554 -1.096	3.206 37.62% 5 <mark>& -1.148</mark>	1.239 20.29%	0.352	0.442 - 2.975	0.277 21.28% & -2.593	0.379 14.21%	0.816	0.457 -2.762	0.725 11.19% <mark>& -2.238</mark>	0.449 1.65%	1.036	0.797 - 3.83	0.792 23.60% & -1.883	0.644 19.18%	4.648	1.770 -3.021	2.272 51.01% & -1.513	1.181 33.29%
Autoformer	avg ↑ δ	2.887	1.131 -1.166	2.605 9.75% 5 <mark>& -1.016</mark>	1.064 5.90%	0.239	0.347 -2.408	0.225 6.16% & -2.134	0.332 4.44%	0.655	0.408 -2.507	0.599 8.61% <mark>& -2.304</mark>	0.389 4.80%	0.485	0.480 - 3.57 2	0.480 1.08% 2 & -2.321	0.478 0.35%	0.442	0.454 - 3.967	0.441 0.25% / <mark>& -1.921</mark>	0.453 0.35%
FEDformer	avg ↑ δ	2.787	1.124 -1.099	2.546 8.64% & -0.917	1.064 5.34%	0.210	0.324 - 2.967	0.194 7.88% & -2.545	0.304 5.95%	0.608	0.374 -2.254	0.549 9.77% & -2.265	0.360 3.70%	0.436	0.456 -3.52	0.431 1.10% & -2.463	0.452 0.74%	0.439	0.451 -3.733	0.438 0.42% & -1.943	0.450 0.40%
ETSformer	avg ↑ δ	2.471	0.993 -1.544	2.310 6.50% & -1.001	0.963 3.03%	0.211	0.325 -2.559	0.197 6.89% & -2.724	0.309 4.75%	0.615	0.390 -2.488	0.502 18.28% & -2.201	0.360 7.57%	0.547	0.510 -3.207	0.541 1.08% 7 & -3.019	0.507 0.56%	0.437	0.455 - 3.067	0.429 1.93% / <mark>& -1.079</mark>	0.449 1.31%
Crossformer	avg ↑ δ	3.443	1.231 -1.038	2.621 23.89% 8 <mark>& -0.917</mark>	1.073 12.84%	0.229	0.334 -2.33	0.226 1.42% 3 & -2.42	0.330 1.11%	0.537	0.302 -2.879	0.482 10.25% <mark>& -2.171</mark>	0.285 5.55%	0.443	0.462 - 3.11 1	0.417 5.94% L & -2.767	0.446 3.53%	1.152	0.778 -2.451	0.829 28.05% & -1.149	0.716 8.06%
DLinear	avg ↑ δ	2.192	1.046 -1.821	1.842 15.95% & -1.301	0.941 10.02%	0.167	0.264 -3.303	0.166 0.75% & -2.645	0.263 0.47%	0.434	0.295 -2.883	0.429 1.27% <mark>& -2.589</mark>	0.291 1.44%	0.467	0.468 -2.981	0.441 5.67% & -2.321	0.447 4.38%	0.448	0.453 -3.023	0.364 18.85% & -1.891	0.406 10.32%
PatchTST	avg ↑ δ	1.542		1.497 2.92% & -1.054	0.802 2.99%	0.164	0.256 - 3.834	0.162 0.76% & -2.878	0.255 0.29%	0.205	0.274 - 3.677	0.204 0.31% & -2.901	0.273 0.36%	0.414	0.423	0.408 1.51% 7 <mark>& -2.529</mark>	0.419 1.06%	0.331	0.380 - 3.299	0.330 0.30% & -1.851	0.379 0.26%

Input: Model $f = (g_{\Phi}, h_{\theta})$, test sample $X_{t-L:t}$, preceding data { $(X_{t'-L:t'}, X_{t':t'+T}) : t' + T \le t$ }, similarity metric $S(\cdot, \cdot)$, periodic length T^* computed by Eq.(3), hyperparameters λ_T , λ_P , λ_N and lr. **Output:** Prediction for the test sample: $\hat{X}_{t:t+T}$ 1 $\mathcal{T} \leftarrow \emptyset;$ ² for $t - \lambda_T \leq t' \leq t - T$ do $\underline{t \bmod T^* - t' \bmod T^*}$ $\Delta_P \leftarrow$ 3 if $\Delta_P < \lambda_P$ then 4 $\leftarrow \mathcal{T} \cup \{t'\};$ 5 end 6 7 end 8 $\mathcal{T}_{ctx} \leftarrow \arg \operatorname{Top-}\lambda_N(S(X_{t'-L:t'}, X_{t-L:t}));$ 9 $\mathcal{D}_{\text{ctx}} \leftarrow \{(X_{t'-L:t'}, X_{t':t'+T}) \mid t \in \mathcal{T}_{\text{ctx}}\};$ 10 $h'_{\theta} \leftarrow$ fine-tune h_{θ} using \mathcal{D}_{ctx} with a learning rate lr; 11 $\hat{X}_{t:t+T} \leftarrow h'_{\theta}(g_{\Phi}(X_{t-L:t}));$ 12 return $\hat{X}_{t:t+T}$;



Code is available at https://github.com/HALF111/calibration_CDS

10.0%

1.0%

 0.1°

lefeishen@zju.edu.cn