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ABSTRACT
Recent years have witnessed the success of introducing deep

learning models to time series forecasting. From a data generation

perspective, we illustrate that existing models are susceptible to

distribution shifts driven by temporal contexts, whether observed

or unobserved. Such context-driven distribution shift (CDS) in-

troduces biases in predictions within specific contexts and poses

challenges for conventional training paradigms. In this paper, we

introduce a universal calibration methodology for the detection and

adaptation of CDS with a trained model. To this end, we propose

a novel CDS detector, termed the "residual-based CDS detector"

or "Reconditionor", which quantifies the model’s vulnerability to

CDS by evaluating the mutual information between prediction

residuals and their corresponding contexts. A high Reconditionor
score indicates a severe susceptibility, thereby necessitating model

adaptation. In this circumstance, we put forth a straightforward

yet potent adapter framework for model calibration, termed the

"sample-level contextualized adapter" or "SOLID". This framework

involves the curation of a contextually similar dataset to the pro-

vided test sample and the subsequent fine-tuning of the model’s

prediction layer with a limited number of steps. Our theoretical

analysis demonstrates that this adaptation strategy can achieve

an optimal bias-variance trade-off. Notably, our proposed Recon-
ditionor and SOLID are model-agnostic and readily adaptable to

a wide range of models. Extensive experiments show that SOLID
consistently enhances the performance of current forecasting mod-

els on real-world datasets, especially on cases with substantial CDS

detected by the proposed Reconditionor, thus validating the effec-
tiveness of the calibration approach.
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1 INTRODUCTION
Time Series Forecasting (TSF) plays a pivotal role in numerous

real-world applications, including energy consumption planning

[5, 6], weather forecasting [2, 10], financial risk assessment [1, 18],

and web recommendation [9, 21, 22]. Recent years have witnessed

the progress of introducing time series forecastingmodel [24, 26, 28–

30] to better capture the temporal dependencies by extracting and

stacking multi-level features. Despite the remarkable architecture

design, the distribution shift [13] has become an unavoidable yet

highly challenging issue, which engenders suboptimal performance

and hampers generalization with a fluctuating distribution.

Generally, distribution shift signifies variations in the underlying

data generation process, which is typically driven by some temporal

observed or unobserved factors, namely contexts. In this paper, we

reveal two significant observed contexts within time series data:

temporal segments (i.e., different temporal stages as the time

evolution), and periodic phases (i.e., the fraction of the period

covered up to the current time), along with other unobserved
contexts. For example, in the scenario of electricity consumption,

factors like economic trends over the years (temporal segments) and

seasonal fluctuations (periodic phases) can affect electricity usage.

We visualized the impact of these two contexts on data distribution

in Appendix C.2. Moreover, sudden policy changes (unobserved

contexts) can also affect the usage. We refer to this phenomenon as

context-driven distribution shift, or CDS.

https://doi.org/10.1145/3637528.3671926
https://doi.org/10.1145/3637528.3671926
https://doi.org/10.1145/3637528.3671926
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Figure 1: (a) Causal graph in the presence of context-driven
distribution shift. (b) Impact of CDS: Autoformer’s resid-
ual distribution on the entire Illness dataset, along with the
residual distributions conditioned on two different periodic
phases.

In the presence of CDS, TSF models remain constrained owing to

their ignorance of contexts. Firstly, the training and testing datasets

are often generated under distinct contexts (i.e., temporal segments).

This deviation from the conventional assumption of consistent

dataset distributions between training and testing data can lead to

suboptimal prediction results. Secondly, evenwithin the training set,

these contexts essentially function as confounders [19] — factors

that simultaneously influence the historical and future data, as

demonstrated in Figure 1(a). Such confounders lead trained models

to capture spurious correlations, causing them to struggle with

generalizing to data from new distributions.

To present the impact of CDS in practice, we trained an Auto-

former [26] on Illness and assessed its ability to fit sub-data in dif-

ferent periodic phases. Residuals, the difference between a model’s

prediction and the ground truth that can reflect the goodness of

fitting, were analyzed for the 47th and 32nd periodic phases, and

the entire dataset. The residual results are visualized in Figure 1(b).

Notably, it can be observed that the model provides an unbiased
estimation for the entire training dataset (i.e., the mean of residuals

is zero). However, the estimation within two specific contexts is

biased since both their means of residuals deviate from zero. This

observation underscores the model’s limitations in fitting sub-data

within a context, as it is susceptible to data from other contexts and

learns spurious correlations. It motivates us to calibrate the model

to achieve more accurate estimation within each context.

Present work. In this paper, we introduce a general calibration ap-

proach to detect and adapt to CDS with a trained model. Specifically,

we first propose a metric to measure the severity of model’s suscep-

tibility to CDS within the training data, namely Residual-based
context-driven distribution shift detector or Reconditionor, by
measuring the mutual information between residuals and observed

contexts to quantify the impact of contexts on model’s prediction.

A higher value from Reconditionor signifies a stronger CDS.

Under this circumstance, we further propose a simple yet effec-

tive adapter framework for further calibration. Given the inherent

variability in contexts across data samples, a one-size-fits-all adap-

tation of the model is inherently unfeasible. Hence, we posit the

need to fine-tune the model at the individual sample-level. Figure
2 illustrates the comparison between the traditional method and

our proposed sample-level adaptation framework. Notably, for each

?predict

Context: Friday

?Step ②: predict

Step ①: contextualized adaptation

model

model

Residual distribution

Residual distribution

CDS

Figure 2: Illustrations of the traditional framework (top) and
the proposed framework (bottom). By calibrating the model
via contextualized adaptation before making each prediction,
the context-driven distribution shift (CDS) can be alleviated.

test sample, adapting the model solely based on that single instance

is intractable. As an alternative, we initiate a data augmentation

process by curating a dataset comprising preceding samples char-

acterized by akin contexts. Since the chosen samples can introduce

significant variance during the adaptation process, we restrict the

fine-tuning to the model’s prediction layer with a limited number of

steps. Our theoretical findings substantiate that this approach can

attain an optimal bias-variance trade-off.We refer to this framework

as Sample-level cOntextuaLIzed aDapter, or SOLID.
Extensive experiments indicate that our proposed calibration

approach consistently enhances the performance of 7 forecasting

models across 8 real-world datasets. Notably, our Reconditionor reli-
ably identifies cases requiring CDS adaptation with a high accuracy

of 89.3%. Furthermore, our proposed SOLID yields an average im-

provement ranging from 8.7% to 15.1% when addressing significant

CDS situations as detected by Reconditionor. Even in cases with

less pronounced CDS, SOLID still achieves an average improve-

ment ranging from 0.3% to 6.3%. From an efficiency perspective, our

method introduces a 20% additional time overhead, a gap smaller

than the effects of dataset variability. Crucially, Reconditionor’s
metric closely aligns with SOLID’s performance gains. These find-

ings provide robust validation of the effectiveness of our calibration

approach.

The main contributions of this work are summarized as follows:

• We propose the concept of context-driven distribution shift (CDS)

by studying the driving factors of distribution shifts and inves-

tigating two observed contexts (temporal segments and periodic
phases), as well as unobserved contexts.

• We propose an end-to-end calibration approach, including Re-
conditionor, a detector to measure the severity of the model’s

susceptibility to CDS, and SOLID, an adapter to calibrate models

for enhancing performance under severe CDS.

• Extensive experiments over various datasets demonstrate that

Reconditionor detects CDS of forecasting models on the training

dataset accurately, and SOLID significantly enhances current

models without substantially compromising time efficiency.
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2 RELATEDWORK
2.1 Time series forecasting models

With the successful rise of deep learning approaches, many re-

cent work utilizes deep learning to better explore the non-linearity

and multiple patterns of the time series and empirically show better

performance. Some research introduces the Transformer to capture

temporal dependencies with the attention mechanism. Specifically,

Informer [29] proposes ProbSparse self-attention. Autoformer [26]

introduces Auto-correlation attention based on seasonal-trend de-

composition. FEDformer [30] proposes Fourier frequency enhanced

attention. ETSformer [24] leverages exponential smoothing atten-

tion. Crossformer [28] utilizes a two-stage attention to capture both

cross-time and cross-dimension dependency. PatchTST [16] pro-

poses patching and channel independence techniques for better

prediction. Different from the Transformer architecture, DLinear

[27] leverages linear models with decomposition or normalization

for TSF tasks. In this paper, our proposed pipeline can be easily

applied to these TSF models, regardless of the model architecture.

2.2 Distribution shift in time series
Distribution shift in time series refers to the phenomenon that

statistical properties and data distribution continuously vary over

time. To better detect such distribution shifts, various methods have

been proposed. Stephan et al. [20] employs dimension reduction and

proposes a two-sample hypothesis testing. Sean et al. [12] proposes
an expected conditional distance test statistic and localizes the exact

feature where the distribution shift appears. Lipton et al. [15] uti-
lizes hypothesis testing based on their proposed Black Box Shift

Estimation, thereby detecting the shift. However, these detection

methods ignore the important context, and are mostly not appro-

priate for time series data. In contrast, our proposed residual-based

detector has sufficient ability to detect the influence of underlying

context on distribution shift.

Meanwhile, addressing distribution shifts in time series fore-

casting is also crucial. One approach is to employ normalization

techniques to stationarize the data. For example, DAIN [17] employs

nonlinear networks to adaptively normalize time series. RevIN [11]

proposes a reversible instance normalization to alleviate series shift.

AdaRNN [7] introduces an Adaptive RNN to solve the problem.

Dish-TS [8] proposes a Dual-Coefficient Net framework to sepa-

rately learn the distribution of input and output space, thus captur-

ing their divergence. Other approaches combine statistical methods

with deep networks. Syml [23] applies Exponential smoothing on

RNN, to concurrently fit seasonality and smoothing coefficients

with RNN weights. SAF [3] integrates a self-supervised learning

stage on test samples to train the model before making the predic-

tion. However, these methods are coupled to model architecture or

require modification during or before the training process, which

limits their application. In contrast, our proposed approach can

efficiently adapt the given trained models solely during test time

and at the sample level.

3 PRELIMINARIES
For a multivariate time series with 𝑀 variables, let 𝒙𝑡 ∈ R𝑀

represent a sample at 𝑡-th timestep. Given a historical sequence:

𝑿𝑡−𝐿:𝑡 = [𝒙𝑡−𝐿, · · · , 𝒙𝑡−1] ∈ R𝐿×𝑀 , where 𝐿 is the look-back

window size, the task is to predict future values with 𝑇 forecasting

window size: 𝑿̂𝑡 :𝑡+𝑇 = [𝒙𝑡 , · · · , 𝒙𝑡+𝑇−1] ∈ R𝑇×𝑀 . The training

objective of a model 𝑓 is to find the best mapping from input to

output sequence, i.e. 𝑿̂𝑡 :𝑡+𝑇 = 𝑓 (𝑿𝑡−𝐿:𝑡 ). In this work, we assume 𝑓

is a deep neural network composed of two parts: a feature extractor
𝑔Φ : R𝐿×𝑀 → R𝑑 mapping the historical values to a 𝑑-dimensional

latent representation, and a linear top ℎ𝜃 named as prediction layer
mapping the representation to predicted future values. The specific

definitions of 𝑔Φ and ℎ𝜃 for different model architectures will be

introduced in Appendix B.4.

4 CONTEXT-DRIVEN DISTRIBUTION SHIFT
In this section, we introduce the limitation of traditional TSF

models. As mentioned before, the data generation in time series

is typically influenced by temporal external factors (i.e., context
𝑐), such as temporal segments and periodic phases. Let 𝑋 , 𝑌 and 𝐶

denote the variables of historical data 𝑿𝑡−𝐿:𝑡 , future data 𝑿𝑡 :𝑡+𝑇
and context 𝑐𝑡 at time step 𝑡 , respectively. The generation of 𝑌 is

dependent on 𝑋 and 𝐶 , characterized as 𝑃 (𝑌 | 𝑋,𝐶).
Due to the ignorance of contexts, the model 𝑓 trained on the

dataset learns a marginal distribution 𝑃 (𝑌 | 𝑋 ) = ∑
𝑐 𝑃 (𝑌 | 𝑋,𝐶 =

𝑐)𝑃 (𝐶 = 𝑐). This introduces a confounding bias [19] since context
𝐶 usually influences both the historical data 𝑋 and the future data

𝑌 , which is evident in Appendix C.2. To illustrate this concept,

consider a simplified example in the domain of recommendation.

In the winter season (context 𝐶), users who purchase hot cocoa

(historical data 𝑋 ) also tend to buy coats (future data 𝑌 ). A model

may "memorize" the correlation between 𝑋 and 𝑌 (a spurious corre-

lation), and mistakenly recommend coats to a user who purchases

hot cocoa in summer. This confounding bias leads to suboptimal

product recommendations. In our subsequent theoretical analysis

(§ 6), we detail that such context consistently adds a bias term to

the model. The following defines this phenomenon formally.

Definition 1 (Context-driven Distribution Shift). If there
exists a variable 𝐶 (related to time 𝑡 ) that influences the data genera-
tion process from historical 𝑋 to future 𝑌 , i.e.,

𝑃 (𝑌 | 𝑋 ) ≠ 𝑃 (𝑌 | 𝑋,𝐶),
then this time series data is said to exhibit a context-driven distri-
bution shift, or CDS. The variable 𝐶 is termed the context.

5 CALIBRATION FRAMEWORK FOR CDS
In this section, we introduce a general calibration methodology

for detecting (in § 5.1) and adapting (in § 5.2) to CDS in conjunc-

tion with the model. The pipeline of this calibration framework is

illustrated in Figure 3.

5.1 Residual-based CDS detector
Our primary focus lies in assessing the model’s susceptibility

to CDS. Our evaluation predominantly centers around observed

contexts, as the analysis of unobserved contexts is computationally

infeasible. Fortunately, for our empirical investigation, the utiliza-

tion of observed contexts proves to be sufficient and effective.

As visually demonstrated in Figure 1(b), the presence of contexts

introduces a bias to the model estimation, causing variations in
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Figure 3: Pipeline of our calibration framework to detect and
adapt to context-driven distribution shift (CDS). We leverage
1○ residual-based context-driven distribution shift detector
(Reconditionor) to assess how susceptible a trained model is
to CDS. If we detect a significant susceptibility, we employ
2○ sample-level contextualized adapter (SOLID) to adapt the
model for each test sample using preceding data that share
similar contexts.

residual distributions across different contexts. Based on it, we

propose a novel detector, namelyResidual-based context-driven
distribution shift detector (or Reconditionor), by measuring the

mutual information (MI) between prediction residuals and their

corresponding contexts. TheMI quantifies the extent of information

acquired regarding the residuals when observing the context, which

serves as a metric for evaluating the influence of contexts on the

model. MI can be computed by:

𝛿 = MI(Δ𝑌 ;𝐶) = E𝐶 [𝐷KL (𝑃 (Δ𝑌 | 𝐶) ∥ 𝑃 (Δ𝑌 ))] , (1)

where Δ𝑌 = 𝑓 (𝑋 ) −𝑌 is the residuals of model 𝑓 , and 𝐷KL (𝑃 ∥𝑄) is
Kullback–Leibler (KL) divergence between distributions 𝑃 and 𝑄 .

We reuse Figure 1(b) to illustrate the concept behind Recondi-
tionor when detecting the distribution shift based on the context of

periodic phases. The marginal residual distribution 𝑃 (Δ𝑌 ) typically
exhibits a mean close to zero after training. However, the residual

distributions conditioned on different contexts (e.g., the 47th phase

and the 32nd phase) 𝑃 (Δ𝑌 | 𝐶) clearly show non-zero mean values.

This increases the KL divergence between the two distributions,

consequently elevating 𝛿 and indicating a strong CDS. Additionally,

a non-zero mean in the conditional residual distribution suggests

the model 𝑓 fails to adequately fit the data within each context,

signaling the need for further adaptation. In summary, a high value

of 𝛿 for a model 𝑓 implies the necessity for adapting 𝑓 , which is

also empirically verified in § 7.2.3.

In practice, we assume that the residuals follow Gaussian distri-

butions. This assumption is based on the utilization of MSE loss,

which implicitly presupposes that the residuals adhere to additive

Gaussian noise. This characteristic is also evident in Figure 1(b).

The adoption of this assumption expedites the calculation of KL

Algorithm 1: Algorithm for Reconditionor

Input:Model 𝑓 , training data with 𝐾 contexts

Dtrain = {(𝑿𝑡−𝐿:𝑡 ,𝑿𝑡 :𝑡+𝑇 , 𝑐𝑡 ) : 𝑡 < 𝑡train, 𝑐𝑡 ∈ [𝐾]}.
Output: 𝛿 ∈ [0, 1] indicating 𝑓 ’s susceptibility to CDS.

1 𝑅 ← ∅;
2 𝑅1, · · · , 𝑅𝐾 ← ∅, · · · ,∅;
3 for 𝐿 ≤ 𝑡 < 𝑡train do
4 𝑟 ← 𝑓 (𝑿𝑡−𝐿:𝑡 ) − 𝑿𝑡 :𝑡+𝑇 ;
5 𝑅 ← 𝑅 ∪ 𝑟 ;
6 𝑅𝑐𝑡 ← 𝑅𝑐𝑡 ∪ 𝑟 ;
7 end
8 𝜇, 𝜎 ← Mean(𝑅), Standard-Deviation(𝑅);
9 𝛿 ← 0;

10 for 𝑐 ∈ [𝐾] do
11 𝜇𝑐 , 𝜎𝑐 ← Mean(𝑅𝑐 ), Standard-Deviation(𝑅𝑐 );
12 𝛿 ← 𝛿 + |𝑅𝑐 ||𝑅 | KL(N (𝜇𝑐 , 𝜎

2

𝑐 ) ∥ N (𝜇, 𝜎2));
13 end
14 return 𝛿 ;

divergence because Gaussian distributions offer a straightforward

analytical solution for it.

We illustrate the full algorithm for Reconditinor in Algorithm 1.

In lines 1-2, we initialize the sets of residuals for both the marginal

distribution 𝑃 (Δ𝑌 ) and the conditional distributions 𝑃 (Δ𝑌 | 𝐶) for
each 𝐶 ∈ [𝐾]. In lines 3-7, we update these sets with the residuals

computed by 𝑓 . We compute the mean and standard deviation

values for 𝑃 (Δ𝑌 ) in line 8 and perform a similar computation for

𝑃 (Δ𝑌 | 𝐶) in line 11. Finally, in line 12, we compute and average

the KL divergences between 𝑃 (Δ𝑌 ) and 𝑃 (Δ𝑌 | 𝐶) to obtain the

detector score 𝛿 .

5.2 Sample-level contextualized adapter
A higher metric 𝛿 from Reconditionor signifies a stronger impact

of CDS on a model. Given the nature of CDS, our primary concept

is to adjust the model to align with the conditional distribution

𝑃 (𝑌 |𝑋,𝐶) instead of the marginal distribution 𝑃 (𝑌 |𝑋 ). However,
noticing that the context 𝐶 is consistently changing at each time

step, a one-size-fits-all adaptation of the model is inherently unfeasi-

ble. Therefore, we propose to carry out adaptations at the individual

sample-level.
For each test sample 𝑋𝑡−𝐿:𝑡 , it is not viable to adapt the model

solely relying on the input 𝑋𝑡−𝐿:𝑡 . Therefore, we commence by

implementing data augmentation through the creation of a dataset

derived from this specific sample, formulated as:

Dctx = Select({(𝑿𝑡 ′−𝐿:𝑡 ′ ,𝑿𝑡 ′ :𝑡 ′+𝑇 ) : 𝑡 ′ +𝑇 ≤ 𝑡}), (2)

where Select operation involves the selection of preceding samples

that share a similar context with the provided sample 𝑿𝑡−𝐿:𝑡 , and
we will provide further elaboration on this operation in § 5.3. We

denote the resulting dataset as the contextualized dataset (Dctx).

Specifically, before making prediction to the test sample 𝑋𝑡−𝐿:𝑡 , we
employ Dctx to adapt the model to alleviate the influence of CDS.

We refer to this step as Sample-level cOntextuaLIzed aDapter,
or SOLID. It’s worth noting that since adaptation takes place during
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the testing phase, we propose to modify the prediction layer ℎ𝜃
while keeping the feature extractor 𝑔Φ unchanged for efficiency. In

our empirical analysis (§ 7.3.2), we observed that fine-tuning solely

the prediction layer not only improves test phase efficiency but also

consistently delivers better performance by mitigating the risk of

overfitting.

Additionally, as we outline in the subsequent theoretical analysis

(§ 6), the fine-tuning process is fundamentally a bias-variance trade-
off : fine-tuning reduces the bias caused by CDS, but introduces

an additional variance from the noise of contextualized dataset

due to the data scarcity, potentially impacting model performance

negatively. Thus, optimally tuning the fine-tuning steps to balance

the trade-off is essential.

5.3 Contextualized dataset selection
As we mentioned previously, the core of adaptation involves

creating the contextualized dataset Dctx for the sample at 𝑡 . In this

section, we introduce the Select operation in Eq.(2). Note that due

to the unavailability of the true context governing the data gen-

eration process, it is not feasible to select samples with precisely

the same context. To address this issue, we design a comprehen-

sive strategy based on the observable contexts (temporal segments

and periodic phases), and employ sample similarity as a proxy for

unobserved contexts.

5.3.1 Temporal segments. The data generation process typically

evolves over time [13]. Consequently, we claim that the temporal
segment is a critical context. Therefore, we focus on samples that

are closely aligned with the test samples in the temporal dimension,

formally,

{(𝑿𝑡 ′−𝐿:𝑡 ′ ,𝑿𝑡 ′ :𝑡 ′+𝑇 ) : 𝑡 − 𝜆𝑇 ≤ 𝑡 ′ ≤ 𝑡 −𝑇 },

where 𝜆𝑇 controls the time range for selection. When samples are

too distant from 𝑡 , we conclude that they are in distinct temporal

segments and consequently exclude them from selection.

5.3.2 Periodic phases. Furthermore, it’s worth mentioning that

time series data often exhibit periodic characteristics. The data

generation process can vary across different phases. Therefore, we

claim that the periodic phase constitutes another critical context.
To find the samples with similar phases, we need to detect the

underlying periods. Specifically, we follow ETSformer [24] and

TimesNet [25] to employ the widely-used Fast Fourier Transform

(FFT) on the training dataset 𝑿 ∈ R𝑡train×𝑀 with length-𝑡train and

𝑀 variables, formulated as:

𝑇 ∗ =
⌊
𝑡train/

{
argmax𝑘∈{2,...,[𝑡train/2] }

∑𝑀
𝑖=1 Ampl(FFT(𝑿𝑖 ))𝑘

}⌋
. (3)

Here, 𝑿𝑖 is the sequence of the 𝑖-th variables in 𝑿 , FFT(·) and
Ampl(·) denote the Fast Fourier Transform (FFT) and amplitude

respectively. To determine the most dominant frequency, we sum

the amplitudes across all𝑀 channels and select the highest value,

which is converted to the periodic length 𝑇 ∗.
Next, we employ the periodic length to select samples with

closely aligned phases. Particularly, for the given test sample at

time step 𝑡 ′, we select samples that display minimal difference in

Algorithm 2: Algorithm for SOLID

Input:Model 𝑓 = (𝑔Φ, ℎ𝜃 ), test sample 𝑿𝑡−𝐿:𝑡 , preceding
data {(𝑿𝑡 ′−𝐿:𝑡 ′ ,𝑿𝑡 ′ :𝑡 ′+𝑇 ) : 𝑡 ′ +𝑇 ≤ 𝑡}, similarity

metric 𝑆 (·, ·), periodic length 𝑇 ∗ computed by Eq.(3),

hyperparameters 𝜆𝑇 , 𝜆𝑃 , 𝜆𝑁 and 𝑙𝑟 .

Output: Prediction for the test sample: 𝑿̂𝑡 :𝑡+𝑇
1 T ← ∅;
2 for 𝑡 − 𝜆𝑇 ≤ 𝑡 ′ ≤ 𝑡 −𝑇 do
3 Δ𝑃 ←

��� 𝑡 mod𝑇 ∗−𝑡 ′ mod𝑇 ∗
𝑇 ∗

���;
4 if Δ𝑃 < 𝜆𝑃 then
5 T ← T ∪ {𝑡 ′};
6 end
7 end
8 Tctx ← argTop-𝜆𝑁

𝑡 ′∈T
(𝑆 (𝑿𝑡 ′−𝐿:𝑡 ′ ,𝑿𝑡−𝐿:𝑡 ));

9 Dctx ← {(𝑿𝑡 ′−𝐿:𝑡 ′ ,𝑿𝑡 ′ :𝑡 ′+𝑇 ) | 𝑡 ∈ Tctx};
10 ℎ′

𝜃
← fine-tune ℎ𝜃 using Dctx with a learning rate 𝑙𝑟 ;

11 𝑿̂𝑡 :𝑡+𝑇 ← ℎ′
𝜃
(𝑔Φ (𝑿𝑡−𝐿:𝑡 ));

12 return 𝑿̂𝑡 :𝑡+𝑇 ;

the phases, formulated as{
(𝑿𝑡 ′−𝐿:𝑡 ′ ,𝑿𝑡 ′ :𝑡 ′+𝑇 ) :

���� 𝑡 mod 𝑇 ∗ − 𝑡 ′ mod 𝑇 ∗

𝑇 ∗

���� < 𝜆𝑃 } ,
where 𝑡 mod 𝑇 ∗ and 𝑡 ′ mod 𝑇 ∗ are the phases of the test sample and

preceding samples, respectively. 𝜆𝑃 is a hyperparameter controlling

the threshold for the acceptable phase difference. If the difference

exceeds a certain threshold, the preceding samples will not be

considered to share the same context as the test sample.

5.3.3 Address unobserved contexts through sample similarity. Even
though the strategies introduced in § 5.3.1 and § 5.3.2 efficiently

identify potential samples with similar contexts, we cannot guar-

antee a consistent mapping relationship 𝑋 ↦→ 𝑌 for these samples

due to the existence of unobserved contexts. To further enhance the

quality of selection and address this issue, it’s essential to recognize

that context typically influences input data through a causal effect

𝐶 ↦→ 𝑋 , which suggests a correlation between contexts and inputs.

Inspired by this insight, we assume that when samples have

similar inputs 𝑋 , they are more likely to share a similar context

𝐶 . Consequently, we incorporate sample similarity as a proxy of

unobserved contexts. The calculation of the similarity can be any

measurement of interest, and we employ the Euclidean distance as

the chosenmetric. Specifically, we select the top-𝜆𝑁 similar samples,

where 𝜆𝑁 serves as a hyperparameter governing the number of

samples to be chosen.

5.3.4 Full algorithm for SOLID . Finally, we combine the above

strategies for the Select operation, by first filtering the temporal

segments and periodic phases (§ 5.3.1 and § 5.3.2) and then selecting

top-𝜆𝑁 samples based on sample similarity (§ 5.3.3).

We illustrate the full algorithm for SOLID in Algorithm 2. We

first compute the periodic length on the training dataset (Eq.(3)).

During the testing stage, for a given test sample, we perform the

following steps: In lines 1-7, we filter the time steps based on the
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observed contexts, temporal segments (§ 5.3.1), and periodic phases

(§ 5.3.2). In lines 8-9, we further select samples based on similarity

(§ 5.3.3). In lines 10-11, we fine-tune the prediction layer (§ 5.2) and

use it for making predictions.

6 THEORETICAL ANALYSIS
In this section, we provide a formal theoretical analysis to es-

timate the generalization error, before and after considering con-

text, to illustrate the influence from CDS (§ 4), as well as the bias-

variance trade-off during the fine-tuning process (§ 5.2). Given our

fine-tuning targets the prediction layer with the feature extractor

remaining frozen, our theoretical analysis centers on the latent

representation space 𝑔Φ (𝑋 ) rather than the raw data 𝑋 . To start

with, we first make the following assumption for the generation

process of 𝑌 :

Assumption 1 (Contextualized generation process). As-
sume that the input latent representations 𝑔Φ (𝑋 ) on the training set
can be divided into 𝐾 context groups based on 𝐾 different contexts:
(𝑋1, · · · , 𝑋𝐾 ), where 𝑋𝑖 ∈ R𝑛𝑖×𝑑 and 𝑛𝑖 is the number of data points
in the 𝑖-th group. For each 𝑖 , there exists a parameter vector 𝜃𝑖 ∈ R𝑑
such that the output 𝑌𝑖 follows:

𝑌𝑖 = 𝑋𝑖𝜃𝑖 + 𝜖𝑖 ,
where 𝜖𝑖 is an independent random noise, which satisfies E[𝜖𝑖 ] = 0,
VAR[𝜖𝑖 ] = 𝜎2. Here we assume that 𝑌𝑖 are scalars for simplicity,
although it can be readily extended to a multi-dimensional scenario.

This assumption extends the widely used fixed design setting
[4, Chapter 3.5] to multi-context scenarios, which posits that the

data generation parameters, 𝜃𝑖 , differ across various contexts 𝑖 .

The prediction layer ℎ𝜃 directly trained without considering the

contexts can be seen as a global linear regressor (GLR), as follows:

Definition 2 (Global linear regressor). A global linear re-
gressor (GLR) ℎ

ˆ𝜃
parameterized by ˆ𝜃 is given by:

ˆ𝜃 = argmin

𝜃

𝐾∑︁
𝑖=1

| |𝑌𝑖 − 𝑋𝑖𝜃 | |22 .

Define R(𝛼1, · · · , 𝛼𝐾 ) = E
[∑𝐾

𝑖=1 | |𝑌𝑖 − 𝑋𝑖𝛼𝑖 | |22
]
as the expected

risk when using a parameter 𝛼𝑖 to predict 𝑋𝑖 (𝑖 ∈ [𝐾]), and let R∗
denote the minimum value of this risk. The following theorem com-

putes the expected risk when we use the globally shared parameter

for prediction, with its proof delegated to Appendix A.

Theorem 1 (Expected risk for GLR). For ˆ𝜃 in Definition 2:

R( ˆ𝜃, · · · , ˆ𝜃︸   ︷︷   ︸
𝐾

) − R∗ =
𝐾∑︁
𝑖=1




𝜃 − 𝜃𝑖


2
𝜓𝑖︸           ︷︷           ︸

bias part

+ 𝜎2𝑑︸︷︷︸
variance part

,

where 𝜓𝑖 = 𝑋⊤
𝑖
𝑋𝑖 , and 𝜃 = (∑𝐾

𝑖=1𝜓𝑖 )−1 (
∑𝐾
𝑖=1𝜓𝑖𝜃𝑖 ). The quantity

| | · | |𝜓𝑖 is the Mahalanobis distance norm, defined as ∥𝜃 ∥2
𝜓𝑖

= 𝜃⊤𝜓𝑖𝜃 .

The bias part in Theorem 1 indicates that GLR is unbiased only

when the data generation parameters 𝜃𝑖 are identical across all

groups. However, if they differ due to the influence of contexts, the

regressor is biased regardless of the amount of data, i.e., CDS.

In the next, we explore a straightforward approach to address

CDS: discarding the existing biased regressor and training a new in-

dividual regressor
ˆ𝜃𝑖 for each context group𝑋𝑖 (𝑖 ∈ [𝐾]) to eliminate

the bias. We refer to this ensemble of regressors as contextualized
linear regressors (CLR), as follows:

Definition 3 (Contextualized linear regressor). A set of
contextualized linear regressors (CLR) ℎ

ˆ𝜃𝑖
parameterized by ˆ𝜃𝑖 (𝑖 ∈

[𝐾]) are given by:

ˆ𝜃𝑖 = argmin

𝜃
| |𝑌𝑖 − 𝑋𝑖𝜃 | |22, ∀𝑖 ∈ {1, 2, ..., 𝐾}.

Using the same risk notations, the following theorem computes

the expected risk for CLR (the proof is detailed in Appendix A).

Theorem 2 (Expected risk for CLR). For ˆ𝜃𝑖 in Definition 3:

R( ˆ𝜃1, · · · , ˆ𝜃𝐾 ) − R∗ = 0︸︷︷︸
bias part

+ 𝐾𝜎2𝑑︸︷︷︸
variance part

.

Comparing Theorem 1 and Theorem 2, we observe that CLR is

always unbiased since it addresses the CDS. However, it suffers from
a larger variance compared to GLR. Specifically, the variance of CLR

is 𝐾-times larger than that of GLR, indicating that more detailed

contexts result in higher variance. This makes sense because as

𝐾 increases, the number of data available for training each CLR

diminishes, consequently elevating the variance.

Based on the above findings, we argue that it’s crucial to combine

GLR and CLR to balance the bias and variance. This can be imple-

mented through a standard pre-training / fine-tuning paradigm. In

the pre-training stage, contexts are disregarded and a GLR ℎ𝜃 is

trained on the training dataset. This pre-training stage mirrors the

conventional standard training process. In the fine-tuning stage,

for a given new sample at 𝑡 , we employ the dataset with the same

context as this sample to fine-tune the learned GLR for limited

steps. This stage mirrors the usage of the proposed SOLID, which
brings GLR closer to CLR and reduces bias. In cases where the

influence of CDS is substantial (i.e., the bias part in Theorem 1 is

large), it is advisable to increase the learning rate and the number

of fine-tuning steps to mitigate bias. In the converse case, the fine-

tuning process should be more limited to reduce variance, as CLR

has greater variance (Theorem 2). In practice, it is recommended to

tune the learning hyperparameters of SOLID to achieve an optimal

trade-off between bias and variance.

7 EXPERIMENTS
In this section, we describe the experimental settings and provide

extensive results and analysis.
1

7.1 Experiment settings
Datasets.We conduct the experiments on 8 popular datasets for

TSF: Electricity, Traffic, Illness, Weather [14], and 4 ETT datasets

(ETTh1, ETTh2, ETTm1, ETTm2) [29]. We follow the standard

preprocessing protocol [26, 29] and partition the datasets into

train/validation/test sets by the ratio of 6:2:2 for ETT and 7:1:2

for the other datasets. Appendix B.1 contains more dataset details.

1
Code is available at https://github.com/HALF111/calibration_CDS.

https://github.com/HALF111/calibration_CDS
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Table 1: Performance comparison. "24 / 96": prediction length is 24 (Illness) or 96 (other datasets), applicable similarly to "36 /
192", etc. "↑": average improvements achieved by SOLID compared to the baseline. "𝜹": metrics given by Reconditioner in two
observed contexts: periodic phases (𝜹𝑷 ) and temporal segments (𝜹𝑻 ), in the form of log10 𝜹𝑷 & log10 𝜹𝑻 . RED highlights a strong
CDS in periodic phases (i.e., log10 𝜹𝑷 ≥ −3.2), while BLUE highlights a weak CDS in periodic phases (i.e., log10 𝜹𝑷 < −3.2).

Dataset Illness Electricity Traffic ETTh1 ETTh2

Method / +SOLID / +SOLID / +SOLID / +SOLID / +SOLID

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Informer

24 / 96 5.096 1.533 2.874 1.150 0.321 0.407 0.245 0.355 0.731 0.406 0.628 0.393 0.948 0.774 0.684 0.586 2.992 1.362 1.659 0.988
36 / 192 5.078 1.535 3.299 1.243 0.351 0.434 0.256 0.363 0.739 0.414 0.653 0.413 1.009 0.786 0.759 0.624 6.256 2.091 3.564 1.553
48 / 336 5.144 1.567 2.879 1.169 0.349 0.432 0.279 0.381 0.850 0.476 0.758 0.466 1.035 0.783 0.776 0.640 5.265 1.954 1.845 1.079
60 / 720 5.243 1.582 3.773 1.394 0.385 0.493 0.327 0.416 0.945 0.530 0.861 0.524 1.153 0.845 0.948 0.726 4.038 1.673 2.020 1.104
↑ 37.62% 20.29% 21.28% 14.21% 11.19% 1.65% 23.60% 19.18% 51.01% 33.29%
𝜹 -1.096 & -1.148 -2.975 & -2.593 -2.762 & -2.238 -3.83 & -1.883 -3.021 & -1.513

Autoformer

24 / 96 3.314 1.245 2.737 1.118 0.207 0.324 0.189 0.304 0.621 0.391 0.565 0.376 0.440 0.444 0.430 0.442 0.363 0.405 0.362 0.404
36 / 192 2.733 1.078 2.540 1.015 0.221 0.334 0.205 0.316 0.666 0.415 0.599 0.379 0.487 0.472 0.480 0.470 0.450 0.447 0.449 0.446
48 / 336 2.651 1.075 2.455 1.042 0.244 0.350 0.232 0.337 0.649 0.405 0.595 0.390 0.471 0.475 0.467 0.473 0.470 0.474 0.468 0.471
60 / 720 2.848 1.126 2.689 1.082 0.285 0.381 0.273 0.370 0.684 0.422 0.635 0.411 0.543 0.528 0.542 0.527 0.484 0.491 0.483 0.489
↑ 9.75% 5.90% 6.16% 4.44% 8.61% 4.80% 1.08% 0.35% 0.25% 0.35%
𝜹 -1.166 & -1.016 -2.408 & -2.134 -2.507 & -2.304 -3.572 & -2.321 -3.967 & -1.921

FEDformer

24 / 96 3.241 1.252 2.707 1.123 0.188 0.304 0.172 0.284 0.574 0.356 0.513 0.344 0.375 0.414 0.370 0.410 0.341 0.385 0.339 0.383
36 / 192 2.576 1.048 2.365 0.990 0.197 0.311 0.180 0.290 0.612 0.379 0.549 0.361 0.427 0.448 0.420 0.443 0.433 0.441 0.432 0.440
48 / 336 2.546 1.058 2.435 1.023 0.213 0.328 0.195 0.307 0.618 0.379 0.557 0.363 0.458 0.465 0.454 0.462 0.503 0.494 0.501 0.491
60 / 720 2.784 1.136 2.677 1.118 0.243 0.352 0.228 0.336 0.629 0.382 0.577 0.371 0.482 0.495 0.478 0.492 0.479 0.485 0.478 0.484
↑ 8.64% 5.34% 7.88% 5.95% 9.77% 3.70% 1.10% 0.74% 0.42% 0.40%
𝜹 -1.099 & -0.917 -2.967 & -2.545 -2.254 & -2.265 -3.52 & -2.463 -3.733 & -1.943

ETSformer

24 / 96 2.397 0.993 2.262 0.955 0.187 0.304 0.171 0.285 0.599 0.386 0.487 0.354 0.495 0.480 0.491 0.478 0.346 0.401 0.344 0.399
36 / 192 2.504 0.970 2.301 0.934 0.198 0.313 0.184 0.298 0.611 0.391 0.492 0.354 0.543 0.505 0.538 0.503 0.437 0.447 0.430 0.443
48 / 336 2.488 0.999 2.320 0.961 0.210 0.326 0.197 0.312 0.619 0.393 0.501 0.359 0.581 0.521 0.574 0.518 0.478 0.479 0.467 0.472
60 / 720 2.494 1.011 2.358 1.002 0.249 0.356 0.234 0.341 0.629 0.391 0.529 0.374 0.569 0.534 0.562 0.530 0.488 0.492 0.474 0.482
↑ 6.50% 3.03% 6.89% 4.75% 18.28% 7.57% 1.08% 0.56% 1.93% 1.31%
𝜹 -1.544 & -1.001 -2.559 & -2.724 -2.488 & -2.201 -3.207 & -3.019 -3.067 & -1.079

Crossformer

24 / 96 3.329 1.275 2.353 0.986 0.184 0.297 0.182 0.295 0.521 0.297 0.473 0.277 0.411 0.432 0.382 0.415 0.641 0.555 0.527 0.544
36 / 192 3.392 1.185 2.527 1.042 0.219 0.317 0.216 0.314 0.523 0.298 0.475 0.280 0.419 0.444 0.396 0.422 1.262 0.814 0.834 0.725
48 / 336 3.481 1.228 2.499 1.063 0.238 0.348 0.235 0.343 0.530 0.300 0.481 0.286 0.439 0.459 0.418 0.443 1.486 0.896 1.048 0.835
60 / 720 3.571 1.234 3.103 1.199 0.274 0.373 0.269 0.368 0.573 0.313 0.498 0.298 0.504 0.514 0.473 0.503 1.220 0.848 0.906 0.758
↑ 23.89% 12.84% 1.42% 1.11% 10.25% 5.55% 5.94% 3.53% 28.05% 8.06%
𝜹 -1.038 & -0.917 -2.333 & -2.42 -2.879 & -2.171 -3.111 & -2.767 -2.451 & -1.149

DLinear

24 / 96 1.947 0.985 1.843 0.938 0.142 0.238 0.140 0.237 0.412 0.283 0.404 0.277 0.375 0.397 0.368 0.391 0.284 0.349 0.280 0.346
36 / 192 2.182 1.036 1.692 0.898 0.153 0.250 0.152 0.249 0.423 0.287 0.420 0.285 0.418 0.429 0.405 0.416 0.389 0.422 0.360 0.398
48 / 336 2.256 1.060 1.694 0.916 0.169 0.268 0.168 0.266 0.436 0.295 0.432 0.291 0.451 0.452 0.436 0.435 0.422 0.447 0.400 0.430
60 / 720 2.381 1.102 2.139 1.012 0.204 0.301 0.203 0.300 0.466 0.315 0.459 0.310 0.624 0.593 0.553 0.547 0.698 0.594 0.415 0.451
↑ 15.95% 10.02% 0.75% 0.47% 1.27% 1.44% 5.67% 4.38% 18.85% 10.32%
𝜹 -1.821 & -1.301 -3.303 & -2.645 -2.883 & -2.589 -2.981 & -2.321 -3.023 & -1.891

PatchTST

24 / 96 1.301 0.734 1.253 0.710 0.134 0.227 0.132 0.226 0.385 0.263 0.383 0.262 0.375 0.400 0.368 0.393 0.274 0.336 0.273 0.336
36 / 192 1.483 0.841 1.449 0.823 0.151 0.243 0.150 0.242 0.393 0.265 0.392 0.264 0.408 0.411 0.402 0.407 0.340 0.380 0.339 0.379
48 / 336 1.652 0.845 1.624 0.831 0.168 0.262 0.167 0.262 0.403 0.273 0.402 0.271 0.431 0.430 0.428 0.428 0.332 0.383 0.331 0.382
60 / 720 1.731 0.886 1.661 0.843 0.201 0.292 0.200 0.291 0.439 0.295 0.438 0.295 0.442 0.452 0.433 0.447 0.378 0.420 0.377 0.418
↑ 2.92% 2.99% 0.76% 0.29% 0.31% 0.36% 1.51% 1.06% 0.30% 0.26%
𝜹 -1.172 & -1.054 -3.834 & -2.878 -3.677 & -2.901 -3.087 & -2.529 -3.299 & -1.851

Results of ETTm1, ETTm2 and Weather datasets are included in Table 8 of Appendix C.1, due to space limit.

Baseline models. As aforementioned, our proposed approach

is a general framework that can calibrate many deep forecasting

models. To verify the effectiveness, we utilize several forecasting

models for the detection and adaptation, including Informer [29],

Autoformer [26], FEDformer [30], ETSformer [24], Crossformer

[28], DLinear [27] and PatchTST [16]. Appendix B.2 contains more

details about the baselines.

Experimental details. For a fair comparison, we set the predic-

tion length𝑇 of {24,36,48,60} for the Illness dataset, and {96,192,336,720}

for the others, which aligns with the common setting for TSF tasks

[26, 30]. Additionally, for other hyper-parameters, we follow the

primary settings proposed in each respective paper [24, 26, 28–30].

For our SOLID, we employ gradient descent to fine-tune the pre-

diction layer on Dctx for one epoch. Appendix B.3 contains more

details about the hyper-parameters.

Evaluation metrics. Consistent with previous research [26,

29, 30], we compare the performance via two widely-used metrics:

Mean Squared Error (MSE) andMeanAbsolute Error (MAE). Smaller

MSE and MAE indicate better forecasting performance. We also

compute the proposed Reconditionor as a metric for detecting the

extent of models’ susceptibility to CDS based on the two observed

contexts, periodic phase (𝛿𝑃 ) and temporal segment (𝛿𝑇 ). For 𝛿𝑃 ,

the number of contexts equals to the periodic length, detailed in

Eq.(3). For 𝛿𝑇 , we partition the training set into five equal segments,

with each one representing a distinct temporal segment. Larger 𝛿𝑃
and 𝛿𝑇 indicate a stronger CDS for the given model and dataset.

7.2 Main results analysis
Table 1 shows the main results of our proposed SOLID alongside

the scores of the proposed Reconditionor. We conduct a thorough

analysis of the data from both perspectives.
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Figure 4: The relationship of Reconditionormetric log10 𝜹𝑷
(X-axis) and MAE improvements achieved by SOLID (Y-axis)
for 8 datasets and 6 models.

7.2.1 Effectiveness of SOLID.

• SOLID enhances the performance of all models across various

datasets by effectively addressing the CDS issue. Particularly,

Informer, which is relatively less powerful, experiences a signifi-

cant enhancement of 10%-60% in MSE. One explanation is that

CDS has a more detrimental effect on weaker models, as they

struggle to learn diverse patterns under different contexts.

• For datasets and models showing significant CDS under the

context of periodic phases (i.e., log
10
𝛿𝑃 ≥ −3.2), SOLID achieves

a considerable improvement. Specifically, it yields an average

improvement of 15.1% for Illness, 9.9% for Traffic, and 8.7% for

Electricity in terms of MSE on these cases. This highlights the

effectiveness of SOLID in addressing severe CDS issues.

• On the cases of weak CDS under the context of periodic phases

(i.e., log
10
𝛿𝑃 below the −3.2 threshold), SOLID still achieves a

consistent improvement ranging from 0.3% to 6.7% across dif-

ferent datasets. This observation underscores the widespread

presence of CDS in time series.

7.2.2 Effectiveness of Reconditionor.

• Our Reconditionor effectively assesses the magnitude of CDS and

aligns with the enhancement achieved by SOLID. When employ-

ing the −3.2 threshold for log
10
𝛿𝑃 to ascertain whether MAE

improvement surpasses 1%, the classification accuracy reaches

89.3% (50 out of 56). This demonstrates that this detector is univer-

sally applicable and unaffected by different datasets and models.

• One exception is that Informer consistently achieves an improve-

ment above 1%, irrespective of Reconditionor metrics. As afore-

mentioned, one explanation is that Informer is relatively weaker,

making it more amenable to improvement by SOLID. When the

results of Informer are excluded, the classification accuracy for

Reconditionor rises to 93.8% (45 out of 48).

• In addition, 𝛿𝑃 explains the performance improvement better

than 𝛿𝑇 . We will give a possible conjecture in the following

subsection to elucidate this observation.

7.2.3 Correlation of Reconditionor and SOLID. To further investi-

gate the correlation between Reconditionor and the improvements

achieved by SOLID, we plot 𝛿𝑃 and MAE improvements in Fig-

ure 4 based on the results of Table 1 and Table 8 in Appendix C.1.

To depict the trend more effectively, we have excluded the data

of Informer as previously explained. Notably, we have observed

a pronounced and consistent upward trend between 𝛿𝑃 and MAE

improvement in Figure 4. This trend is highly evident, with a Spear-

man correlation coefficient of 0.7998. This finding indicates that

𝛿𝑃 can serve as a valuable metric for estimating and explaining

performance improvements. We also elaborate on the relationship

between 𝛿𝑇 and MAE improvement in detail in Appendix C.3.

7.3 Further analysis for SOLID
In this section, we conducted additional experiments to further

analyze SOLID. Figure 5 presents partial results, with the full results
reported in Appendix C.1.

7.3.1 Ablation studies. We conducted ablation studies to investi-

gate the relationship between performance and each component

in the selection strategy, particularly each observable or unobserv-

able context we propose in § 5.3. The investigation involves a pro-

gression of strategy components. Specifically, we commence from

original forecasts that ignore any contexts, denoted as "/". We then

create contextualized datasets with various selection variations.

For a fair comparison, all datasets are constructed by selecting 𝜆𝑁
samples from 𝜆𝑇 nearest ones. We first consider Temporal seg-
ment context by selecting the nearest 𝜆𝑁 samples, denoted as "T".
Then we take Periodic phase into consideration, and select 𝜆𝑁
nearest samples with phase differences less than 𝜆𝑃 , denoted as

"T+P". Finally, we add sample Similarity and select the top-𝜆𝑁
similar samples from nearest 𝜆𝑇 samples with phase differences less

than 𝜆𝑃 . This strategy mirrors SOLID and is denoted as "T+P+S".
Based on the results in Figure 5(a) and 5(b), we showcase that each

component leads to a consistent improvement in both MSE and

MAE. These findings provide compelling evidence supporting the

effectiveness of all components utilized in our selection strategy as

well as the SOLID method.

7.3.2 Comparative studies on adapting only prediction layer or en-
tire model. All our previous experiments are performed solely by

adapting the prediction layer while keeping the crucial parameters

of bottom feature extractor layers unchanged. Nevertheless, it is

imperative to conduct comparative experiments to validate this

perspective. Specifically, we compare the results achieved by solely

adapting the prediction layer against adapting the entire model. The

experimental results are presented in Figure 5(c). It indicates that

solely adapting the prediction layer consistently yields superior

performance. One explanation is that it reduces the risk of over-

fitting. Moreover, solely adapting the prediction layer significantly

faster the speed of inference.

7.3.3 Comparison studies against other approaches addressing dis-
tribution shifts. In this section, we compared two widely used base-

lines, RevIN [11] and Dish-TS [8] which also address distribution

shifts in time series forecasting. It is worth mentioning that they

are strategies that work during training, which differs from our

SOLID acting as a post-calibration method during the test process.

Also, both RevIN and Dish-TS adapt the input data to better suit

the model, whereas SOLID adapts the model to match the data

distribution of the current context. Therefore, these methods are

complementary and not exclusive. We explored their joint use on

Autoformer, shown in Figures 5(d) and 5(e). We can observe that

SOLID consistently improves performance, regardless of whether

models were trained with RevIN or Dish-TS. Moreover, in many
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 40 (0.77×)

 133 (0.78×)

 161 (0.79×)

FED.
FED. + SOLID

(f) Speed

Figure 5: Further analysis of SOLID. (a)(b) Ablation studies for three contexts, temporal segment (T), periodic phase (P), and
sample similarity (S). (c) Studies on tuning strategies to explore adaptation on prediction layer (PL) only vs. entire model (EM).
(d)(e) Comparison studies against RevIN (R.IN) and Dish-TS (D.TS). (f) Efficiency studies on the prediction speed.

cases, combining them achieves the best performance, suggesting

the orthogonality of Context-driven DS (CDS) with other types of

DS addressed by them.

7.3.4 Efficiency analysis. Furthermore, we analyze the practical

efficiency of the proposed framework. For Reconditionor, it con-
ducts a one-time analysis of residuals during the training process,

thus not incurring any additional overhead during deployment. For

SOLID, it incurs two steps of overhead for each prediction sam-

ple: (1) constructing the contextualized dataset, and (2) fine-tuning

the model. Step (1) can be optimized using some engineering tech-

niques, such as pre-caching intermediate embeddings and building

efficient vector indexing. For step (2), since only the prediction layer

is fine-tuned, the computational cost will not be too high. To further

assess SOLID’s efficiency, we report the additional time overhead

introduced by SOLID to FEDFormer across various datasets in Fig-

ure 5(f). The results indicate that SOLID’s inference speed is about

80% of traditional methods, a gap smaller than the variability intro-

duced by different datasets, which suggests that our method does

not significantly reduce inference speed.

7.3.5 Parameter sensitivity analysis and case study. We adjusted

the hyperparameters within SOLID across multiple datasets and

models to assess their impact on performance and conducted a case

study to visualize the improvement. From the results, we discover

that SOLID is insensitive to 𝜆𝑇 , which controls the time range of

preceding data for selection, and 𝜆𝑃 , which governs the acceptable

threshold for periodic phase difference. But concerning 𝜆𝑁 , which

determines the number of similar samples to be selected for model

adaptation, and 𝑙𝑟 , which regulates the extent of adaptation on

the prediction layer for the models, they exist an optimal value

and should be well selected. The detailed results are reported in

Appendix C.4 and Appendix C.5.

8 CONCLUSION
In this paper, we introduce context-driven distribution shift

(CDS) problem in TSF and identify two significant observed con-

texts, including temporal segments and periodic phases, along with

unobserved contexts. To address the issue, we propose a general

calibration framework, including a detector, Reconditionor, to eval-

uate the degree of a model’s susceptibility to CDS and the necessity

for model adaptation; and an adaptation framework, SOLID, for
calibrating models and enhancing their performance under severe

CDS. We conduct extensive experiments on 8 real-world datasets

and 7 models, demonstrating the accuracy of Reconditionor in de-

tecting CDS and the effectiveness of SOLID in adapting TSF models

without substantially compromising time efficiency. This adapta-

tion consistently leads to improved performance, which can be well

explained by Reconditionor.

Limitations and future work. (1) Despite demonstrating consis-

tent performance improvements, SOLID introduces an approximate

additional 20% time overhead during the testing phase. Employing

further engineering optimizations to narrow this efficiency gap

will be investigated in future work. (2) While Reconditionor proves
effective in leveraging observed contexts to ascertain the impact

of CDS, whether unobserved context can be used for detection

is an interesting open question. (3) The selection of contextually

similar samples relies on heuristic rules in this paper. Investigating

further contexts or developing more generalized selection criteria

represents a promising area of research.
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APPENDIX
A PROOFS FOR THE THEORETICAL RESULTS

In this section, we give the proofs for the expected risks in Theo-

rem 1 and Theorem 2. To start with, we give the following lemma to

perform the usual bias/variance decomposition. The risk notations

R and R∗ are defined in § 6.

Lemma A.1 (Risk decomposition). For a set of random variables
𝛼1, · · · , 𝛼𝐾 used as parameters for each group, we have:

R(𝛼1, · · · , 𝛼𝐾 ) − R∗ =
𝐾∑︁
𝑖=1

∥E[𝛼𝑖 ] − 𝜃𝑖 ∥2𝜓𝑖︸                  ︷︷                  ︸
bias part

+
𝐾∑︁
𝑖=1

E
[
∥𝛼𝑖 − E[𝛼𝑖 ] ∥2𝜓𝑖

]
︸                        ︷︷                        ︸

variance part

,

where𝜓𝑖 = 𝑋⊤𝑖 𝑋𝑖 , 𝜃 = (∑𝐾
𝑖=1𝜓𝑖 )−1 (

∑𝐾
𝑖=1𝜓𝑖𝜃𝑖 ), and ∥𝜃 ∥2𝜓𝑖 = 𝜃

⊤𝜓𝑖𝜃 .

Proof. This is a direct corollary of [4, Proposition 3.3]. □

Based on the risk decomposition, we give the computation for

GLR and CLR respectively, as follows.

A.1 Proof for Theorem 1
Set 𝛼1 = · · · = 𝛼𝐾 = ˆ𝜃 in Lemma A.1, we obtain:

R
(
ˆ𝜃, · · · , ˆ𝜃

)
︸      ︷︷      ︸

𝐾

−R∗ =
𝐾∑︁
𝑖=1




E[ ˆ𝜃 ] − 𝜃𝑖


2
𝜓𝑖︸                ︷︷                ︸

bias part

+
𝐾∑︁
𝑖=1

E

[


𝛼𝑖 − E[ ˆ𝜃 ]


2
𝜓𝑖

]
︸                      ︷︷                      ︸

variance part

.

We first compute the expectation in the bias part. Recall that,

ˆ𝜃 = argmin

𝜃

𝐾∑︁
𝑖=1

∥𝑌𝑖 − 𝑋𝑖𝜃 ∥22,

which has a closed-form solution, as follows:

ˆ𝜃 =

(
𝐾∑︁
𝑖=1

𝜓𝑖

)−1 (
𝐾∑︁
𝑖=1

𝑋⊤𝑖 𝑌𝑖

)
=

(
𝐾∑︁
𝑖=1

𝜓𝑖

)−1 (
𝐾∑︁
𝑖=1

𝑋⊤𝑖 (𝑋𝑖𝜃𝑖 + 𝜖𝑖 )
)
.

(A.1)

Therefore, we can obtain the expectation:

E[ ˆ𝜃 ] =
(
𝐾∑︁
𝑖=1

𝜓𝑖

)−1 (
𝐾∑︁
𝑖=1

𝑋⊤𝑖 (𝑋𝑖𝜃𝑖 + E[𝜖𝑖 ])
)

=

(
𝐾∑︁
𝑖=1

𝜓𝑖

)−1 (
𝐾∑︁
𝑖=1

𝜓𝑖𝜃𝑖

)
:= 𝜃, (A.2)

which implies the bias part. Then we compute the variance part 𝑉 :

𝑉 =

𝐾∑︁
𝑖=1

E

[


 ˆ𝜃 − E[ ˆ𝜃 ]


2
𝜓𝑖

]
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A.2 Proof for Theorem 2
Set 𝛼𝑖 = ˆ𝜃𝑖 in Lemma A.1 for 𝑖 ∈ [𝐾], we obtain:

R
(
ˆ𝜃1, · · · , ˆ𝜃𝐾

)
− R∗ =

𝐾∑︁
𝑖=1




E[ ˆ𝜃𝑖 ] − 𝜃𝑖


2
𝜓𝑖︸                 ︷︷                 ︸
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+
𝐾∑︁
𝑖=1

E

[


 ˆ𝜃𝑖 − E[ ˆ𝜃𝑖 ]


2
𝜓𝑖

]
︸                       ︷︷                       ︸

variance part

.

(A.3)

From Proposition 3.4 and Proposition 3.5 in [4], for each 𝑖 ∈ [𝐾]:




E[ ˆ𝜃𝑖 ] − 𝜃𝑖


2
𝜓𝑖

= 0, E

[


 ˆ𝜃𝑖 − E[ ˆ𝜃𝑖 ]


2
𝜓𝑖

]
= 𝜎2𝑑. (A.4)

Combining Eq.(A.3) and Eq.(A.4), we obtain the desired result.

B DETAILS OF EXPERIMENTS
B.1 Datasets details

We conduct our experiment on 8 popular datasets following

previous researches [26, 29]. The statistics of these datasets are

summarized in Table 2, and publicly available at https://github.com/

zhouhaoyi/Informer2020 and https://github.com/thuml/Autoformer.

(1) ETTh1/ETTh2/ETTm1/ETTm2. ETT dataset contains 7

indicators collected from electricity transformers from July 2016 to

July 2018, including useful load, oil temperature, etc. Data points

are recorded hourly for ETTh1 and ETTh2, while recorded every

15 minutes for ETTm1 and ETTm2.

(2) Electricity. Electricity dataset contains the hourly electricity
consumption (in KWh) of 321 customers from 2012 to 2014.

(3) Traffic. Traffic dataset contains hourly road occupancy rate

data measured by different sensors on San Francisco Bay area free-

ways in 2 years. The data is from the California Department of

Transportation.

(4) Illness. Illness dataset includes 7 weekly recorded indicators

of influenza-like illness patients data from Centers for Disease

Control and Prevention of the United States between 2002 and

2021.

(5) Weather. Weather dataset contains 21 meteorological indica-

tors, like temperature, humidity, etc. The dataset is recorded every

10 minutes for the 2020 whole year.

B.2 Baseline models
We briefly describe our selected baseline models:

(1) Informer [29] utilizes ProbSparse self-attention and distilla-

tion operation to capture cross-time dependency.

(2) Autoformer [26] utilizes series decomposition block archi-

tecture with Auto-Correlation to capture cross-time dependency.

(3) FEDformer [30] presents a sparse representation within

the frequency domain and proposes frequency-enhanced blocks to

capture the cross-time dependency.

(4) ETSformer [24] exploits the principle of exponential smooth-

ing and leverages exponential smoothing attention and frequency

attention.

(5) Crossformer [28] utilizes a dimension-segment-wise em-

bedding and introduces a two-stage attention layer to capture the

cross-time and cross-dimension dependency.

(6) DLinear [27] proposes a linear forecasting model, along with

seasonal-trend decomposition or normalization operations.

(7) PatchTST [16] utilizes Transformer encoders as model back-

bone, and proposes patching and channel independence techniques

for better prediction.

https://github.com/zhouhaoyi/Informer2020
https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer
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Table 2: The statistics of 8 datasets, including the number of variates, total timesteps, and the frequency of data sampling.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather Illness

Variates 7 7 7 7 321 862 21 7

Timesteps 17,420 17,420 69,680 69,680 26,304 17,544 52,695 966

Frequency 1hour 1hour 15min 15min 1hour 1hour 10min 1week

Table 3: Hyper-parameters for SOLID.

Dataset 𝜆𝑇 𝜆𝑃 𝜆𝑁 𝑙𝑟/𝑙𝑟train
ETTh1

{500, 1000, 2000}

{0
.0
2
,0
.0
5
,0
.1
}

{5, 10, 20}

{5, 10, 20, 50}
ETTh2

ETTm1

ETTm2

Electricity {500, 1000, 1500, 2000}
Traffic {1000, 1500, 2000, 3000}
Weather {5, 10, 20, 50}
Illness {100, 200, 300} {2, 3, 5} {10, 20, 50, 100}

B.3 Hyper-parameters
For all experiments, during the training process, we use the same

hyper-parameters as reported in the corresponding papers [24, 26–

30], e.g., encoder/decoder layers, model hidden dimensions, head

numbers of multi-head attention and batch size.

As for hyper-parameters for adaptation process, there exists 4

major hyper-parameters for SOLID, including 𝜆𝑇 , 𝜆𝑃 , 𝜆𝑁 , 𝑙𝑟 (We

report the ratio 𝑙𝑟/𝑙𝑟train between adaptation learning rate 𝑙𝑟 and the

training learning rate 𝑙𝑟train as an alternative). We select the setting

which performs the best on the validation set. The search range for

the parameters is presented in Table 3.

B.4 Specific structures of 𝑔Φ and ℎ𝜃
We divide our baseline TSF models into three categories, in-

cluding Encode-decoder-based, Encoder-based, and Linear-based

architectures for explanation.

• Encode-decoder-based (e.g., Informer, Autoformer, FEDformer,

ETSformer, and Crossformer): ℎ𝜃 refers to the linear projection

layer at the top of decoders, and the other parts of decoders and

the entire encoders correspond to 𝑔Φ.

• Encoder-based (e.g., PatchTST): ℎ𝜃 refers to the top linear predic-

tion layer at the top of the encoders, and the other parts (including

self-attention and embedding layers) correspond to 𝑔Φ.

• Linear-based (e.g., DLinear): Since Linear models only include

linear layers for modeling,ℎ𝜃 refers to the linear layers, and there

is no 𝑔Φ.

C FURTHER EXPERIMENT RESULTS
C.1 Full results

In this section, we report the full results of § 7.2 and § 7.3.

• Table 4 details the ablation study’s results across five models and

three datasets.

Table 4: Extended table of Figures 5(a)-5(b): Ablation study
on SOLID.

Dataset Electricity Traffic Illness

Metric MSE MAE MSE MAE MSE MAE

Informer / 0.321 0.407 0.731 0.406 5.106 1.534

T 0.252 0.362 0.636 0.396 4.443 1.427

T+P 0.248 0.358 0.628 0.393 2.901 1.186

T+P+S 0.245 0.355 0.628 0.393 2.874 1.150

Autoformer / 0.207 0.324 0.620 0.391 3.314 1.245

T 0.193 0.309 0.579 0.380 3.333 1.251

T+P 0.196 0.309 0.577 0.380 2.981 1.201

T+P+S 0.189 0.304 0.565 0.377 2.737 1.118

FEDformer / 0.188 0.304 0.574 0.356 3.241 1.252

T 0.173 0.284 0.522 0.346 3.234 1.253

T+P 0.172 0.283 0.520 0.345 2.953 1.189

T+P+S 0.172 0.284 0.513 0.344 2.707 1.123

ETSformer / 0.187 0.304 0.599 0.386 2.397 0.993

T 0.174 0.289 0.493 0.356 2.377 0.989

T+P 0.173 0.287 0.489 0.356 2.334 0.977

T+P+S 0.171 0.285 0.487 0.354 2.262 0.955

Crossformer / 0.184 0.297 0.521 0.297 3.329 1.275

T 0.188 0.301 0.482 0.273 2.705 1.098

T+P 0.184 0.297 0.476 0.270 2.469 0.993

T+P+S 0.182 0.295 0.473 0.267 2.353 0.986

(a) context: temporal segments (b) context: periodic phases

Figure 6: Illustration for two contexts on ETTh1 training
dataset, which has a period of 24 and length of 8760. Different
colors represent different values of contexts.

• Tables 5 and 6 compare the effectiveness of our approach against

RevIN and Dish-TS in addressing distribution shifts.

• Table 7 compares the results of two tuning strategies, i.e., full
parameter fine-tuning vs. prediction layer-only fine-tuning, ap-

plied to five models and three datasets. The prediction lengths

are 24 (for Illness) and 96 (for Traffic and ETTh1).

• Table 8 details the benchmark results for ETTm1, ETTm2, and

Weather datasets, where our proposed Reconditioner identified
relatively lower metrics.
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Table 5: Extended table of Figure 5(d): Comparison experi-
ments between our proposed SOLID and RevIN for tackling
distribution shift. The TSF model is Autoformer.

Method +SOLID +RevIN +RevIN +SOLID

Metric MSE MAE MSE MAE MSE MAE

ETTh1 96 0.430 0.442 0.465 0.453 0.462 0.450

ETTh2 96 0.362 0.404 0.396 0.401 0.393 0.398
ETTm1 96 0.443 0.448 0.555 0.479 0.553 0.477

ETTm2 96 0.312 0.345 0.232 0.307 0.230 0.305
Electricity 96 0.189 0.304 0.182 0.289 0.176 0.284
Traffic 96 0.565 0.376 0.637 0.392 0.552 0.357
Weather 96 0.259 0.334 0.209 0.254 0.208 0.253
Illness 24 2.737 1.118 2.810 1.119 2.795 1.107

Table 6: Extended table of Figure 5(e): Comparison experi-
ments between our proposed SOLID and Dish-TS for tackling
distribution shift. The TSF model is Autoformer.

Method +SOLID +Dish-TS +Dish-TS +SOLID

Metric MSE MAE MSE MAE MSE MAE

ETTh1 96 0.430 0.442 0.419 0.430 0.416 0.428
ETTh2 96 0.362 0.404 0.369 0.394 0.366 0.393
ETTm1 96 0.443 0.448 0.488 0.452 0.486 0.449
ETTm2 96 0.312 0.345 0.213 0.295 0.209 0.291

Electricity 96 0.189 0.304 0.169 0.279 0.162 0.273
Traffic 96 0.565 0.376 0.586 0.381 0.518 0.345
Weather 96 0.259 0.334 0.194 0.244 0.192 0.243
Illness 24 2.737 1.118 2.587 1.079 2.571 1.063

Table 7: Extended table of Figure 5(c): Performance compari-
son between adaptation on prediction layer (PL) versus adap-
tation on entire model (EM).

Dataset ETTh1 Traffic Illness

Metric MSE MAE MSE MAE MSE MAE

Informer / 0.948 0.774 0.731 0.406 5.096 1.533

+SOLID-PL 0.684 0.586 0.628 0.393 2.874 1.150
+SOLID-EM 0.817 0.656 0.692 0.403 2.991 1.208

Autoformer / 0.440 0.444 0.621 0.391 3.314 1.245

+SOLID-PL 0.430 0.442 0.565 0.376 2.737 1.118
+SOLID-EM 0.436 0.443 0.597 0.385 2.891 1.150

FEDformer / 0.375 0.414 0.574 0.356 3.241 1.252

+SOLID-PL 0.370 0.410 0.513 0.344 2.707 1.123
+SOLID-EM 0.373 0.413 0.539 0.348 2.874 1.201

ETSformer / 0.495 0.480 0.599 0.386 2.397 0.993

+SOLID-PL 0.491 0.478 0.487 0.354 2.262 0.955
+SOLID-EM 0.492 0.479 0.517 0.368 2.353 0.986

Crossformer / 0.411 0.432 0.521 0.297 3.329 1.275

+SOLID-PL 0.382 0.415 0.473 0.267 2.397 1.052
+SOLID-EM 0.401 0.427 0.493 0.273 2.653 1.074

C.2 Visualizing the impact of contexts on data
distribution

To demonstrate the influence of context on data distribution, we

utilized the Autoformer [26] to extract latent representations from

Table 8: Extended table of Table 1. "↑": average improve-
ments achieved by SOLID compared to the original forecast-
ing results. "𝜹": metrics given by Reconditionor in two ob-
served contexts: periodic phases (𝜹𝑷 ) and temporal segments
(𝜹𝑻 ), presented in the form of log10 𝜹𝑷 & log10 𝜹𝑻 . RED high-
lights a strong CDS in periodic phases (i.e., log10 𝜹𝑷 ≥ −3.2),
while BLUE highlights a weak CDS in periodic phases (i.e.,
log10 𝜹𝑷 < −3.2).

Dataset ETTm1 ETTm2 Weather

Method / +SOLID / +SOLID / +SOLID

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

In
fo
rm

er

96 0.624 0.556 0.426 0.436 0.412 0.498 0.279 0.379 0.394 0.436 0.321 0.377
192 0.727 0.620 0.535 0.503 0.821 0.710 0.453 0.503 0.501 0.491 0.330 0.367
336 1.085 0.776 0.696 0.601 1.459 0.926 0.664 0.612 0.591 0.540 0.400 0.421
720 1.200 0.814 0.775 0.631 3.870 1.461 1.875 0.982 1.070 0.755 0.681 0.576
↑ 33.13% 21.52% 50.15% 31.11% 32.19% 21.71%
𝜹 -3.357 & -2.229 -3.082 & -1.527 -4.495 & -1.402

A
ut
of
or
m
er

96 0.445 0.449 0.443 0.448 0.313 0.346 0.312 0.345 0.260 0.334 0.259 0.334
192 0.549 0.500 0.547 0.499 0.283 0.341 0.282 0.340 0.322 0.377 0.321 0.376
336 0.633 0.533 0.631 0.532 0.327 0.367 0.326 0.366 0.367 0.398 0.367 0.397
720 0.672 0.559 0.670 0.558 0.445 0.434 0.444 0.433 0.414 0.421 0.414 0.421
↑ 0.30% 0.19% 0.24% 0.20% 0.06% 0.06%
𝜹 -3.851 & -2.851 -3.524 & -1.264 -4.236 & -1.714

FE
D
fo
rm

er

96 0.362 0.412 0.360 0.410 0.190 0.283 0.189 0.283 0.225 0.307 0.225 0.307
192 0.399 0.428 0.398 0.427 0.256 0.324 0.255 0.324 0.318 0.374 0.317 0.374
336 0.441 0.456 0.440 0.455 0.327 0.365 0.326 0.364 0.347 0.385 0.346 0.385
720 0.486 0.477 0.485 0.477 0.434 0.425 0.434 0.424 0.408 0.424 0.407 0.422
↑ 0.31% 0.25% 0.14% 0.12% 0.22% 0.21%
𝜹 -3.979 & -2.896 -3.914 & -1.133 -4.159 & -1.569

ET
Sf
or
m
er

96 0.371 0.394 0.369 0.392 0.187 0.280 0.186 0.279 0.216 0.298 0.213 0.295
192 0.402 0.405 0.402 0.405 0.251 0.319 0.251 0.318 0.253 0.329 0.251 0.326
336 0.429 0.423 0.429 0.423 0.313 0.356 0.312 0.355 0.289 0.352 0.286 0.348
720 0.429 0.455 0.428 0.455 0.414 0.413 0.410 0.410 0.355 0.401 0.353 0.399
↑ 0.14% 0.12% 0.56% 0.44% 0.93% 0.81%
𝜹 -3.996 & -2.900 -3.541 & -1.188 -4.614 & -1.793

C
ro
ss
fo
rm

er

96 0.312 0.367 0.311 0.367 0.770 0.599 0.689 0.580 0.151 0.219 0.151 0.219
192 0.350 0.391 0.348 0.390 0.567 0.516 0.450 0.512 0.196 0.264 0.196 0.264
336 0.407 0.427 0.403 0.425 0.830 0.637 0.616 0.613 0.246 0.307 0.246 0.306
720 0.648 0.580 0.538 0.515 1.754 1.010 1.037 0.786 0.311 0.357 0.311 0.357
↑ 6.81% 3.77% 28.75% 9.81% 0.11% 0.10%
𝜹 -3.369 & -2.148 -2.979 & -1.767 -4.521 & -1.423

D
Li
ne

ar

96 0.310 0.353 0.306 0.349 0.169 0.262 0.168 0.261 0.176 0.238 0.175 0.232
192 0.340 0.369 0.339 0.368 0.232 0.308 0.230 0.306 0.218 0.276 0.216 0.272
336 0.374 0.390 0.373 0.389 0.299 0.360 0.296 0.356 0.262 0.312 0.261 0.308
720 0.440 0.435 0.437 0.434 0.439 0.451 0.434 0.447 0.326 0.365 0.324 0.359
↑ 0.61% 0.45% 0.97% 0.80% 0.61% 1.68%
𝜹 -3.057 & -2.786 -3.521 & -1.697 -4.386 & -1.793

Pa
tc
hT

ST

96 0.292 0.345 0.290 0.344 0.166 0.257 0.165 0.255 0.152 0.200 0.151 0.199
192 0.333 0.370 0.332 0.370 0.220 0.293 0.219 0.292 0.197 0.243 0.196 0.242
336 0.366 0.390 0.365 0.389 0.275 0.329 0.274 0.328 0.250 0.285 0.250 0.285
720 0.420 0.424 0.419 0.423 0.366 0.385 0.365 0.384 0.316 0.334 0.316 0.334
↑ 0.35% 0.20% 0.39% 0.40% 0.22% 0.19%
𝜹 -3.356 & -2.879 -3.471 & -1.454 -3.986 & -1.573

the ETTh1 dataset and applied PCA for dimensionality reduction

and visualization. This ensures the spatial positions of the data

points in the figure represent their original distribution.

We marked two observed contexts – temporal segments and pe-

riodic phases – on the figures. Unobserved contexts, being difficult

to visualize, are not displayed. Figure 6(a) reveals a progressive out-

ward shift in data distribution with increasing temporal segments.

Similarly, Figure 6(b) shows that changes in the periodic phase lead

to a rotational shift in data distribution. Note that if CDS doesn’t

exist, different colors (denoting contexts) should be scattered and

randomly mixed in the figure since colors are independent of spatial

positions, which is not the case shown in Figure 6. Therefore, it is

evident that these contexts markedly affect data distribution.

C.3 Correlation of 𝛿𝑇 and MAE improvement
In § 7.2.3, we found that the correlation between 𝛿𝑃 and MAE

improvement is very strong. We display the correlation between

𝛿𝑇 and MAE improvement in Figure 7 as well. Unlike 𝛿𝑃 , the rela-

tion between 𝛿𝑇 and MAE improvement is not as straightforward.
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Figure 7: The relationship log10 𝜹𝑻 (X-axis) andMAE improve-
ments achieved by SOLID (Y-axis) for 8 datasets and 6models.

Despite showing an increasing trend in Figure 7, the Spearman

correlation coefficient is merely 0.2129. This implies that, while

there is evidence of CDS stemming from temporal segments as

detected by Reconditionor, SOLID is comparatively less effective

at mitigating it when compared to CDS caused by periodic phases.

One possible explanation is that data generated within the same

phase tends to follow a more predictable pattern, while data within

the same temporal segment exhibits greater diversity and uncer-

tainty, which may limit the utility of selecting data from the same

segment to address CDS caused by temporal segments. We leave

further investigation of it to future work.

C.4 Parameter sensitivity analysis
Within our proposed approach, several crucial parameters are

presented, including 𝜆𝑇 , which controls the time range of preceding

data for selection; 𝜆𝑃 , which governs the acceptable threshold for

periodic phase difference; 𝜆𝑁 , which determines the number of

similar samples to be selected for model adaptation; And 𝑙𝑟 , which

regulates the extent of adaptation on the prediction layer for the

models. The search range for these parameters is presented in

Table 3. The results of parameter sensitivity analysis are visually

presented in Figure 8.

Firstly, we discover that our proposed SOLID is insensitive to 𝜆𝑇
and 𝜆𝑃 parameters, based on the results obtained. Regarding the 𝜆𝑁
parameter, the selection of insufficient samples would increase the

variance during adaptation due to the data shortage. Conversely, se-

lecting excessive samples carries the risk of including samples with

unobserved irrelevant contexts, thereby deteriorating the model’s

performance. Lastly, For parameter 𝑙𝑟 , a very small 𝑙𝑟 leads to in-

adequate model adaptation, preventing the model from effectively

addressing CDS and resulting in a bias towards the test sample

(Theorem 1). Conversely, a too large value for 𝑙𝑟 can lead to exces-

sive adaptation, which also risks bringing in substantial variance

to the model (Theorem 2). Therefore, a well-selected learning rate

will contribute to an optimal trade-off between bias and variance.

C.5 Case study
In addition, we conduct a case study and visualize our proposed

method on various cases across different datasets and models, as

presented in Figure 9.

Specifically, we plot the figures on these combinations: Illness

(timestep 120 & 160, variate 7) on Crossformer, Traffic (timestep

200& 550, variate 862) on FEDformer, Electricity (timestep 1500& 3000,

variate 321) on Autoformer, and ETTh1 (timestep 250 & 650, variate

7) on Informer, corresponding to Figure 9 (a)-(h). The visualization

vividly illustrates the effectiveness of our approach in improving

forecasting performance.
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Figure 8: Parameter sensitivity results for 𝜆𝑇 , 𝜆𝑃 , 𝜆𝑁 and 𝑙𝑟 , on Illness and Traffic datasets.
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Figure 9: Case study and visualization of our proposed methods on various cases across different datasets and models, where
BLUE lines represent ground-truth, ORANGE lines represent original forecasting results, and GREEN lines represent the
forecasts after employing our approach. Besides, 𝑡𝑠120 denotes this case is sampled at timestep-120 in the test set, and so on.
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