
Mouxiang Chen, Hao Tian, Zhongxin Liu, Xiaoxue Ren, Jianling Sun

The State Key Laboratory of Blockchain and Data Security, Zhejiang University

JUMPCODER: Go Beyond Autoregressive Coder via Online Modification

 An illustrative example demonstrating the

difference between humans and LLMs.

➢ When a new variable is required,

humans can jump back to the front

section to define it.

➢ But LLMs, constrained by their

autoregressive nature, can only continue

generation and lead to error propagation.

TL; DR

➢Motivation: Traditional code LLMs (Autoregressive Coder) generate code in

a linear, irreversible sequence. This can lead to errors accumulating over time.

➢Method: We introduce JumpCoder, a model-agnostic code generation

framework for augmenting code LLMs without retraining.

➢How it Works: JumpCoder can insert new code into currently generated code

on-the-fly with an auxiliary infilling model.
generation
model

infilling
model

2. Challenges

➢ Challenge 1: How to infill a line?

➢ Use a pre-trained infilling model.

➢ e.g., InCoder, CodeLlama-Instruct.

➢ Challenge 2: Whether (and where) to infill, or

continue generation?

➢ infill first, judge-later: ① let infill model

experiment with filling at the start of the 𝑘 most

critical lines; ② judge their contributions to the

current generation.

3. Method

① Hybrid Generation

➢ Generate 𝑘 + 1 lines of code: 𝑘 infills, 1 line of continual generation

➢ Efficiency Optimization: Parallel generation, Speculative infilling

② Judging

➢ AST Parser: accepts the infill that adds the missing declaration.

➢ Generation Model Scoring: scores the code following the infill. If improved, accept the infill.

➢ Other case: continue generation.

③ Combination

➢ Combine the line of code after judging into existing 𝑛 lines of code

4. Experiments

1. Motivation Example

▲ JumpCoder Framework. The iterative code update process comprises three important stages:

Hybrid generation, Judging and Combination. Each iteration inserts a new line of code.

▲ Results of Pass@1 (%) on HumanEval

and MBPP using greedy generation. JC (V):

Use code from JumpCoder. JC (F): use code

from JumpCoder and Autoregressive Coder

based on the lower perplexity. JC (O): use

code from the above two based on evaluation

test cases, served as an upper bound.

 Results on

MultiPL-E. On

average,

JumpCoder

passes an

additional 5.8%

(Java), 3.6% (C#)

and 2.7% (C++)

problems.

Code is available at https://github.com/Keytoyze/JumpCoder chenmx@zju.edu.cn

 Schematic

illustrations of traditional

autoregressive coder and

the proposed JumpCoder.

	幻灯片 1

