JumPCoDER: Go Beyond Autoregressive Coder via Online Modification

Mouxiang Chen, Hao Tian, Zhongxin Liu, Xiaoxue Ren, Jianling Sun
The State Key Laboratory of Blockchain and Data Security, Zhejiang University

Boght. Tt
TL; DR

»Motivation: Traditional code LLMs (Autoregressive Coder) generate code In
a linear, irreversible sequence. This can lead to errors accumulating over time.

4 Schematic

llustrations of traditional
autoregressive coder and
the proposed JumpCoder.

!

»Method: We introduce JumpCoder, a model-agnostic code generation
framework for augmenting code LLMs without retraining.

»How it Works: JumpCoder can insert new code into currently generated code
on-the-fly with an auxiliary infilling model.

Infilling
model

generation
model

Autoregresswe Coder JumpCoder

1. Motivation Example

def separate paren_groups(paren string: str)

def separate_paren_groups(paren_string: str)

S I need to jump back to
the previously written
code to add a new

variablel

Input to this function is a string containing
multiple groups of nested parentheses.

Your goal is to separate those group into
separate strings and return the list of those.

Input to this function is a string containing

multiple groups of nested parentheses.
Your goal is to separate those group into

<4 An Illustrative example demonstrating the

separate strings and return the list of those. > OO =[O () "(OO)'] difference between humans and LLMSs.
>>> OO0 => [0 ()" "(O0)"] P .
e . ! groups = [] :
1 groups = [] , : group = ' : . . .
| roup = : ' open_parens = @ < : » When a new variable Is required,
E for char in paren_string: ! Human ! for char in paren_string: : humans can Jump back to the front
| if char == "(': t cod : : if char == "(': @ ® E _ _ _
! group += char % curren code ’: S group += _Cb:’:l_r‘____r ______ section to deﬂne It.
R e e T open_parens += 1
elif char == ")':
g"e To move fOrWD ol = e » But LLMs, constrained by their
Autoregressive open parens -= 1 _ _
LLM if open_parens == 0: autoregreSSIVe nature, can Only continue
roups.append(grou : :
__________________________________________________ gmuz -append(group) generation and lead to error propagation.
elif char == ")": return groups

group += char

groups. append(group)
group = '

2. Challenges

» Challenge 1: How to Iinfill a line?
> Use a pre-trained infilling model. g N —> X
> e.g., InCoder, CodeLlama-Instruct. Select || fpe chan in nanea cheins. Infiing
_ ij groups = [] »| open_parens = 0 [\n]
IanII:.Ing <?> oroiin = '
. . pPOSItlIoONS
» Challenge 2: Whether (and where) to infill, or Current code (k=2) *q eroups = [1 » group = "' [\n]
. . — group =
continue generation? croup — " > - ﬂ
. . . . . . . groups =
> infill first, judge-later: () let infill model C‘”‘ char in paren_string: group = ' oo ——>|if char = '(": [\n]
. s o chon .
experiment with filling at the start of the k most A Or CTer I Paren STME | model
crltlcaltllnes; @fjudge their contributions to the @ Hybrid generation
current generation.
groups = [] ) v/ open_parens = 0 [\n] B ol - E
4 Expenments ;izzgpir?vs - X group = "' [\n] ~L Generation @ AST i
for char in paren_string: X if char == '(': [\n] < model X Parser E
Generation model Method HumanEwval MEPP @ Combination \ ettt ’
- 36.0 42.4 .
CODELLAMA £JC(V)  378(+1.8) 448 (+2.4) | | @ Judging | |
(7B) :}E 5[1;3; 396 (+3.6) 452 (+2.8) A JumpCoder Framework. The iterative code update process comprises three important stages:
396 (+3.6) 45.2(+2.8) : : : : : . : : :
5 s Hybrid generation, Judging and Combination. Each iteration inserts a new line of code.
CODELLAMA . ‘ ‘
- + JC (V) 40.2 (+1.8) 45.4 (+2.2) ' '
-PYTHON LICH)  A15GAD) 45.6(+2.4 @ Hybrid Generation o | | |
+IC ) 41.5(+3.1) 46.8(+3.6) » Generate k + 1 lines of code: k infills, 1 line of continual generation
CODELLAMA 10 (v)  445013.6) 468 121.0) > Efficiency Optimization: Parallel generation, Speculative infilling
-INSTRUCT ' ) ' ) ’
+ JC (F) 43.9 (+3.0) 46.6 (+0.8) i
(13B) +JC(0O) 457 (+4.8) 48.0(+2.2} CD‘thglng o o _
_ 2.0 00 » AST Parser: accepts the infill that adds the missing declaration.
CODELLAMA ' ‘ : : ! c : - g
_PYTHON :"}EEE g }::*gi 0 Ejag; » Generation Model Scoring: scores the code following the infill. If improved, accept the infill.
13B s A it _ : :
H8) +1C(0)  47.0(+3.1)  53.2(+3.2) » Other case; continue generation.
WizARDCODER + IC V) 64 Eﬁfﬂ 6 57 ;?fﬂ 4 @ Combination
P b ' : " : : : . . .. .
(13B) HICE 652012 57204 > Combine the line of code after judging into existing n lines of code
+ 15,9 (+1.9) 372 (+0.4)
- T3.8 39.2
WEFSEE;?ER +IC(V) 744 (+0.6)  59.2 (+0.0)
B (34B) + IC(F) 74.4 (+0.6) 59.6 (+0.4)
) +JC(O)  75.0(+1.2)  60.0(+0.8) Baseline 45 Baseline o 50 - Baseline <4 Results on
601 mmm jumpCoder (V) _ mm  JumpCoder (V) - - B JumpCoder (V) MultiPL-E. On
A Results of Pass@l (%) on HumanEval = B jumpCoder (O) X 407 mmm JumpCoder [D} ) 50 . B jumpCoder (O) average
_ _ —~ 50 — — y
and MBPP using greedy generation. JC (V): @ %35' 52, 1 JumpCoder
] o M
Use code from JumpCoder. JC (F): use code = “° % 301 . * passes an
from JumpCoder and Autoregressive Coder 30 51 ul} ﬂ additional 5.8%
based on the lower perplexity. JC (O): use T8 218 (120 013130 a0® ﬂ?’ R PEEFEE Il (Java), 3.6% (C#)
code from the above two based on evaluation Generation model Generatmn model Generation model and 2.7% (C++)
test cases, served as an upper bound.
PP (a) Java (b) C# (c) C++ problems.

Code Is available at https://github.com/Keytoyze/JumpCoder

chenmx@zju.edu.cn




	幻灯片 1

